Metamath Proof Explorer


Theorem cortrclrcl

Description: Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrclrcl
|- ( t* o. r* ) = t*

Proof

Step Hyp Ref Expression
1 cotrclrcl
 |-  ( t+ o. r* ) = t*
2 1 eqcomi
 |-  t* = ( t+ o. r* )
3 2 coeq1i
 |-  ( t* o. r* ) = ( ( t+ o. r* ) o. r* )
4 coass
 |-  ( ( t+ o. r* ) o. r* ) = ( t+ o. ( r* o. r* ) )
5 corclrcl
 |-  ( r* o. r* ) = r*
6 5 coeq2i
 |-  ( t+ o. ( r* o. r* ) ) = ( t+ o. r* )
7 6 1 eqtri
 |-  ( t+ o. ( r* o. r* ) ) = t*
8 4 7 eqtri
 |-  ( ( t+ o. r* ) o. r* ) = t*
9 3 8 eqtri
 |-  ( t* o. r* ) = t*