Metamath Proof Explorer


Theorem cortrclrcl

Description: Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020)

Ref Expression
Assertion cortrclrcl t*r*=t*

Proof

Step Hyp Ref Expression
1 cotrclrcl t+r*=t*
2 1 eqcomi t*=t+r*
3 2 coeq1i t*r*=t+r*r*
4 coass t+r*r*=t+r*r*
5 corclrcl r*r*=r*
6 5 coeq2i t+r*r*=t+r*
7 6 1 eqtri t+r*r*=t*
8 4 7 eqtri t+r*r*=t*
9 3 8 eqtri t*r*=t*