| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosargd.1 |
|- ( ph -> X e. CC ) |
| 2 |
|
cosargd.2 |
|- ( ph -> X =/= 0 ) |
| 3 |
1 2
|
cosargd |
|- ( ph -> ( cos ` ( Im ` ( log ` X ) ) ) = ( ( Re ` X ) / ( abs ` X ) ) ) |
| 4 |
3
|
eqeq1d |
|- ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( ( Re ` X ) / ( abs ` X ) ) = 0 ) ) |
| 5 |
1
|
recld |
|- ( ph -> ( Re ` X ) e. RR ) |
| 6 |
5
|
recnd |
|- ( ph -> ( Re ` X ) e. CC ) |
| 7 |
1
|
abscld |
|- ( ph -> ( abs ` X ) e. RR ) |
| 8 |
7
|
recnd |
|- ( ph -> ( abs ` X ) e. CC ) |
| 9 |
1 2
|
absne0d |
|- ( ph -> ( abs ` X ) =/= 0 ) |
| 10 |
6 8 9
|
diveq0ad |
|- ( ph -> ( ( ( Re ` X ) / ( abs ` X ) ) = 0 <-> ( Re ` X ) = 0 ) ) |
| 11 |
4 10
|
bitrd |
|- ( ph -> ( ( cos ` ( Im ` ( log ` X ) ) ) = 0 <-> ( Re ` X ) = 0 ) ) |