| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosargd.1 |
⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 2 |
|
cosargd.2 |
⊢ ( 𝜑 → 𝑋 ≠ 0 ) |
| 3 |
1 2
|
cosargd |
⊢ ( 𝜑 → ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) ) |
| 4 |
3
|
eqeq1d |
⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = 0 ↔ ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = 0 ) ) |
| 5 |
1
|
recld |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℝ ) |
| 6 |
5
|
recnd |
⊢ ( 𝜑 → ( ℜ ‘ 𝑋 ) ∈ ℂ ) |
| 7 |
1
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 8 |
7
|
recnd |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 9 |
1 2
|
absne0d |
⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≠ 0 ) |
| 10 |
6 8 9
|
diveq0ad |
⊢ ( 𝜑 → ( ( ( ℜ ‘ 𝑋 ) / ( abs ‘ 𝑋 ) ) = 0 ↔ ( ℜ ‘ 𝑋 ) = 0 ) ) |
| 11 |
4 10
|
bitrd |
⊢ ( 𝜑 → ( ( cos ‘ ( ℑ ‘ ( log ‘ 𝑋 ) ) ) = 0 ↔ ( ℜ ‘ 𝑋 ) = 0 ) ) |