Metamath Proof Explorer


Theorem argregt0

Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion argregt0 ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )

Proof

Step Hyp Ref Expression
1 recl ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ )
2 gt0ne0 ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 )
3 1 2 sylan ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 )
4 fveq2 ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ 0 ) )
5 re0 ( ℜ ‘ 0 ) = 0
6 4 5 eqtrdi ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = 0 )
7 6 necon3i ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 )
8 3 7 syl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ≠ 0 )
9 logcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ )
10 8 9 syldan ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ )
11 10 imcld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ )
12 coshalfpi ( cos ‘ ( π / 2 ) ) = 0
13 simpr ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) )
14 abscl ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ )
15 14 adantr ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ )
16 15 recnd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ )
17 16 mul01d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 )
18 simpl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ )
19 absrpcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
20 8 19 syldan ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ )
21 20 rpne0d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 )
22 18 16 21 divcld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ )
23 15 22 remul2d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) )
24 18 16 21 divcan2d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 )
25 24 fveq2d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) )
26 23 25 eqtr3d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) )
27 13 17 26 3brtr4d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) )
28 0re 0 ∈ ℝ
29 28 a1i ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ )
30 22 recld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ )
31 29 30 20 ltmul2d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) )
32 27 31 mpbird ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) )
33 efiarg ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
34 8 33 syldan ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) )
35 34 fveq2d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) )
36 32 35 breqtrrd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
37 recosval ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
38 11 37 syl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
39 36 38 breqtrrd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
40 fveq2 ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
41 40 a1i ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
42 11 recnd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ )
43 cosneg ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
44 42 43 syl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
45 fveqeq2 ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
46 44 45 syl5ibrcom ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
47 11 absord ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ∨ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
48 41 46 47 mpjaod ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
49 39 48 breqtrrd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
50 12 49 eqbrtrid ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) )
51 42 abscld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ )
52 42 absge0d ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
53 logimcl ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) )
54 8 53 syldan ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) )
55 54 simpld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) )
56 pire π ∈ ℝ
57 56 renegcli - π ∈ ℝ
58 ltle ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
59 57 11 58 sylancr ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) )
60 55 59 mpd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) )
61 54 simprd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π )
62 absle ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) )
63 11 56 62 sylancl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) )
64 60 61 63 mpbir2and ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π )
65 28 56 elicc2i ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) )
66 51 52 64 65 syl3anbrc ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) )
67 halfpire ( π / 2 ) ∈ ℝ
68 pirp π ∈ ℝ+
69 rphalfcl ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ )
70 rpge0 ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) )
71 68 69 70 mp2b 0 ≤ ( π / 2 )
72 rphalflt ( π ∈ ℝ+ → ( π / 2 ) < π )
73 68 72 ax-mp ( π / 2 ) < π
74 67 56 73 ltleii ( π / 2 ) ≤ π
75 28 56 elicc2i ( ( π / 2 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ π ) )
76 67 71 74 75 mpbir3an ( π / 2 ) ∈ ( 0 [,] π )
77 cosord ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ∧ ( π / 2 ) ∈ ( 0 [,] π ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
78 66 76 77 sylancl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) )
79 50 78 mpbird ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) )
80 abslt ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) )
81 11 67 80 sylancl ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) )
82 79 81 mpbid ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) )
83 82 simpld ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) )
84 82 simprd ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) )
85 67 renegcli - ( π / 2 ) ∈ ℝ
86 85 rexri - ( π / 2 ) ∈ ℝ*
87 67 rexri ( π / 2 ) ∈ ℝ*
88 elioo2 ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) )
89 86 87 88 mp2an ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) )
90 11 83 84 89 syl3anbrc ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) )