| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recl |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ 𝐴 ) ∈ ℝ ) |
| 2 |
|
gt0ne0 |
⊢ ( ( ( ℜ ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ 𝐴 ) ≠ 0 ) |
| 4 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = ( ℜ ‘ 0 ) ) |
| 5 |
|
re0 |
⊢ ( ℜ ‘ 0 ) = 0 |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( ℜ ‘ 𝐴 ) = 0 ) |
| 7 |
6
|
necon3i |
⊢ ( ( ℜ ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 8 |
3 7
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ≠ 0 ) |
| 9 |
|
logcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 10 |
8 9
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 11 |
10
|
imcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) |
| 12 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 13 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ 𝐴 ) ) |
| 14 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 16 |
15
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
| 17 |
16
|
mul01d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) = 0 ) |
| 18 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 19 |
|
absrpcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 20 |
8 19
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ+ ) |
| 21 |
20
|
rpne0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 22 |
18 16 21
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 𝐴 / ( abs ‘ 𝐴 ) ) ∈ ℂ ) |
| 23 |
15 22
|
remul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 24 |
18 16 21
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) = 𝐴 ) |
| 25 |
24
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( ( abs ‘ 𝐴 ) · ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 26 |
23 25
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) = ( ℜ ‘ 𝐴 ) ) |
| 27 |
13 17 26
|
3brtr4d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) |
| 28 |
|
0re |
⊢ 0 ∈ ℝ |
| 29 |
28
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ∈ ℝ ) |
| 30 |
22
|
recld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 31 |
29 30 20
|
ltmul2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ↔ ( ( abs ‘ 𝐴 ) · 0 ) < ( ( abs ‘ 𝐴 ) · ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) ) ) |
| 32 |
27 31
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 33 |
|
efiarg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 34 |
8 33
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( 𝐴 / ( abs ‘ 𝐴 ) ) ) |
| 35 |
34
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) = ( ℜ ‘ ( 𝐴 / ( abs ‘ 𝐴 ) ) ) ) |
| 36 |
32 35
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 37 |
|
recosval |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 38 |
11 37
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℜ ‘ ( exp ‘ ( i · ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 39 |
36 38
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 40 |
|
fveq2 |
⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 41 |
40
|
a1i |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 42 |
11
|
recnd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ ) |
| 43 |
|
cosneg |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℂ → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 45 |
|
fveqeq2 |
⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ↔ ( cos ‘ - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 46 |
44 45
|
syl5ibrcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 47 |
11
|
absord |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = ( ℑ ‘ ( log ‘ 𝐴 ) ) ∨ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) = - ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 48 |
41 46 47
|
mpjaod |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) = ( cos ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 49 |
39 48
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 50 |
12 49
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) |
| 51 |
42
|
abscld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 52 |
42
|
absge0d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 53 |
|
logimcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 54 |
8 53
|
syldan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) |
| 55 |
54
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 56 |
|
pire |
⊢ π ∈ ℝ |
| 57 |
56
|
renegcli |
⊢ - π ∈ ℝ |
| 58 |
|
ltle |
⊢ ( ( - π ∈ ℝ ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 59 |
57 11 58
|
sylancr |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - π < ( ℑ ‘ ( log ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) |
| 60 |
55 59
|
mpd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 61 |
54
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) |
| 62 |
|
absle |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ π ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
| 63 |
11 56 62
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ↔ ( - π ≤ ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) ≤ π ) ) ) |
| 64 |
60 61 63
|
mpbir2and |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) |
| 65 |
28 56
|
elicc2i |
⊢ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∧ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ≤ π ) ) |
| 66 |
51 52 64 65
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) |
| 67 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 68 |
|
pirp |
⊢ π ∈ ℝ+ |
| 69 |
|
rphalfcl |
⊢ ( π ∈ ℝ+ → ( π / 2 ) ∈ ℝ+ ) |
| 70 |
|
rpge0 |
⊢ ( ( π / 2 ) ∈ ℝ+ → 0 ≤ ( π / 2 ) ) |
| 71 |
68 69 70
|
mp2b |
⊢ 0 ≤ ( π / 2 ) |
| 72 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
| 73 |
68 72
|
ax-mp |
⊢ ( π / 2 ) < π |
| 74 |
67 56 73
|
ltleii |
⊢ ( π / 2 ) ≤ π |
| 75 |
28 56
|
elicc2i |
⊢ ( ( π / 2 ) ∈ ( 0 [,] π ) ↔ ( ( π / 2 ) ∈ ℝ ∧ 0 ≤ ( π / 2 ) ∧ ( π / 2 ) ≤ π ) ) |
| 76 |
67 71 74 75
|
mpbir3an |
⊢ ( π / 2 ) ∈ ( 0 [,] π ) |
| 77 |
|
cosord |
⊢ ( ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ∧ ( π / 2 ) ∈ ( 0 [,] π ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 78 |
66 76 77
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( cos ‘ ( π / 2 ) ) < ( cos ‘ ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) ) ) ) |
| 79 |
50 78
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ) |
| 80 |
|
abslt |
⊢ ( ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ ( π / 2 ) ∈ ℝ ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) |
| 81 |
11 67 80
|
sylancl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ( abs ‘ ( ℑ ‘ ( log ‘ 𝐴 ) ) ) < ( π / 2 ) ↔ ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) |
| 82 |
79 81
|
mpbid |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 83 |
82
|
simpld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ) |
| 84 |
82
|
simprd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) |
| 85 |
67
|
renegcli |
⊢ - ( π / 2 ) ∈ ℝ |
| 86 |
85
|
rexri |
⊢ - ( π / 2 ) ∈ ℝ* |
| 87 |
67
|
rexri |
⊢ ( π / 2 ) ∈ ℝ* |
| 88 |
|
elioo2 |
⊢ ( ( - ( π / 2 ) ∈ ℝ* ∧ ( π / 2 ) ∈ ℝ* ) → ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) ) |
| 89 |
86 87 88
|
mp2an |
⊢ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ↔ ( ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) < ( ℑ ‘ ( log ‘ 𝐴 ) ) ∧ ( ℑ ‘ ( log ‘ 𝐴 ) ) < ( π / 2 ) ) ) |
| 90 |
11 83 84 89
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 0 < ( ℜ ‘ 𝐴 ) ) → ( ℑ ‘ ( log ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) (,) ( π / 2 ) ) ) |