Metamath Proof Explorer


Theorem argregt0

Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015)

Ref Expression
Assertion argregt0 A 0 < A log A π 2 π 2

Proof

Step Hyp Ref Expression
1 recl A A
2 gt0ne0 A 0 < A A 0
3 1 2 sylan A 0 < A A 0
4 fveq2 A = 0 A = 0
5 re0 0 = 0
6 4 5 eqtrdi A = 0 A = 0
7 6 necon3i A 0 A 0
8 3 7 syl A 0 < A A 0
9 logcl A A 0 log A
10 8 9 syldan A 0 < A log A
11 10 imcld A 0 < A log A
12 coshalfpi cos π 2 = 0
13 simpr A 0 < A 0 < A
14 abscl A A
15 14 adantr A 0 < A A
16 15 recnd A 0 < A A
17 16 mul01d A 0 < A A 0 = 0
18 simpl A 0 < A A
19 absrpcl A A 0 A +
20 8 19 syldan A 0 < A A +
21 20 rpne0d A 0 < A A 0
22 18 16 21 divcld A 0 < A A A
23 15 22 remul2d A 0 < A A A A = A A A
24 18 16 21 divcan2d A 0 < A A A A = A
25 24 fveq2d A 0 < A A A A = A
26 23 25 eqtr3d A 0 < A A A A = A
27 13 17 26 3brtr4d A 0 < A A 0 < A A A
28 0re 0
29 28 a1i A 0 < A 0
30 22 recld A 0 < A A A
31 29 30 20 ltmul2d A 0 < A 0 < A A A 0 < A A A
32 27 31 mpbird A 0 < A 0 < A A
33 efiarg A A 0 e i log A = A A
34 8 33 syldan A 0 < A e i log A = A A
35 34 fveq2d A 0 < A e i log A = A A
36 32 35 breqtrrd A 0 < A 0 < e i log A
37 recosval log A cos log A = e i log A
38 11 37 syl A 0 < A cos log A = e i log A
39 36 38 breqtrrd A 0 < A 0 < cos log A
40 fveq2 log A = log A cos log A = cos log A
41 40 a1i A 0 < A log A = log A cos log A = cos log A
42 11 recnd A 0 < A log A
43 cosneg log A cos log A = cos log A
44 42 43 syl A 0 < A cos log A = cos log A
45 fveqeq2 log A = log A cos log A = cos log A cos log A = cos log A
46 44 45 syl5ibrcom A 0 < A log A = log A cos log A = cos log A
47 11 absord A 0 < A log A = log A log A = log A
48 41 46 47 mpjaod A 0 < A cos log A = cos log A
49 39 48 breqtrrd A 0 < A 0 < cos log A
50 12 49 eqbrtrid A 0 < A cos π 2 < cos log A
51 42 abscld A 0 < A log A
52 42 absge0d A 0 < A 0 log A
53 logimcl A A 0 π < log A log A π
54 8 53 syldan A 0 < A π < log A log A π
55 54 simpld A 0 < A π < log A
56 pire π
57 56 renegcli π
58 ltle π log A π < log A π log A
59 57 11 58 sylancr A 0 < A π < log A π log A
60 55 59 mpd A 0 < A π log A
61 54 simprd A 0 < A log A π
62 absle log A π log A π π log A log A π
63 11 56 62 sylancl A 0 < A log A π π log A log A π
64 60 61 63 mpbir2and A 0 < A log A π
65 28 56 elicc2i log A 0 π log A 0 log A log A π
66 51 52 64 65 syl3anbrc A 0 < A log A 0 π
67 halfpire π 2
68 pirp π +
69 rphalfcl π + π 2 +
70 rpge0 π 2 + 0 π 2
71 68 69 70 mp2b 0 π 2
72 rphalflt π + π 2 < π
73 68 72 ax-mp π 2 < π
74 67 56 73 ltleii π 2 π
75 28 56 elicc2i π 2 0 π π 2 0 π 2 π 2 π
76 67 71 74 75 mpbir3an π 2 0 π
77 cosord log A 0 π π 2 0 π log A < π 2 cos π 2 < cos log A
78 66 76 77 sylancl A 0 < A log A < π 2 cos π 2 < cos log A
79 50 78 mpbird A 0 < A log A < π 2
80 abslt log A π 2 log A < π 2 π 2 < log A log A < π 2
81 11 67 80 sylancl A 0 < A log A < π 2 π 2 < log A log A < π 2
82 79 81 mpbid A 0 < A π 2 < log A log A < π 2
83 82 simpld A 0 < A π 2 < log A
84 82 simprd A 0 < A log A < π 2
85 67 renegcli π 2
86 85 rexri π 2 *
87 67 rexri π 2 *
88 elioo2 π 2 * π 2 * log A π 2 π 2 log A π 2 < log A log A < π 2
89 86 87 88 mp2an log A π 2 π 2 log A π 2 < log A log A < π 2
90 11 83 84 89 syl3anbrc A 0 < A log A π 2 π 2