Metamath Proof Explorer


Theorem cosord

Description: Cosine is decreasing over the closed interval from 0 to _pi . (Contributed by Paul Chapman, 16-Mar-2008) (Proof shortened by Mario Carneiro, 10-May-2014)

Ref Expression
Assertion cosord A0πB0πA<BcosB<cosA

Proof

Step Hyp Ref Expression
1 simpll A0πB0πA<BA0π
2 simplr A0πB0πA<BB0π
3 simpr A0πB0πA<BA<B
4 1 2 3 cosordlem A0πB0πA<BcosB<cosA
5 4 ex A0πB0πA<BcosB<cosA
6 fveq2 A=BcosA=cosB
7 6 eqcomd A=BcosB=cosA
8 7 a1i A0πB0πA=BcosB=cosA
9 simplr A0πB0πB<AB0π
10 simpll A0πB0πB<AA0π
11 simpr A0πB0πB<AB<A
12 9 10 11 cosordlem A0πB0πB<AcosA<cosB
13 12 ex A0πB0πB<AcosA<cosB
14 8 13 orim12d A0πB0πA=BB<AcosB=cosAcosA<cosB
15 14 con3d A0πB0π¬cosB=cosAcosA<cosB¬A=BB<A
16 0re 0
17 pire π
18 16 17 elicc2i A0πA0AAπ
19 18 simp1bi A0πA
20 16 17 elicc2i B0πB0BBπ
21 20 simp1bi B0πB
22 recoscl BcosB
23 recoscl AcosA
24 axlttri cosBcosAcosB<cosA¬cosB=cosAcosA<cosB
25 22 23 24 syl2anr ABcosB<cosA¬cosB=cosAcosA<cosB
26 19 21 25 syl2an A0πB0πcosB<cosA¬cosB=cosAcosA<cosB
27 axlttri ABA<B¬A=BB<A
28 19 21 27 syl2an A0πB0πA<B¬A=BB<A
29 15 26 28 3imtr4d A0πB0πcosB<cosAA<B
30 5 29 impbid A0πB0πA<BcosB<cosA