| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 0 [,] π ) ) |
| 2 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ( 0 [,] π ) ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 4 |
1 2 3
|
cosordlem |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐴 < 𝐵 ) → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) |
| 5 |
4
|
ex |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝐴 = 𝐵 → ( cos ‘ 𝐴 ) = ( cos ‘ 𝐵 ) ) |
| 7 |
6
|
eqcomd |
⊢ ( 𝐴 = 𝐵 → ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ) |
| 8 |
7
|
a1i |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 = 𝐵 → ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ) ) |
| 9 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐵 ∈ ( 0 [,] π ) ) |
| 10 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐴 ∈ ( 0 [,] π ) ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → 𝐵 < 𝐴 ) |
| 12 |
9 10 11
|
cosordlem |
⊢ ( ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) ∧ 𝐵 < 𝐴 ) → ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) |
| 13 |
12
|
ex |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐵 < 𝐴 → ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) |
| 14 |
8 13
|
orim12d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) → ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 15 |
14
|
con3d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) → ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 16 |
|
0re |
⊢ 0 ∈ ℝ |
| 17 |
|
pire |
⊢ π ∈ ℝ |
| 18 |
16 17
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 19 |
18
|
simp1bi |
⊢ ( 𝐴 ∈ ( 0 [,] π ) → 𝐴 ∈ ℝ ) |
| 20 |
16 17
|
elicc2i |
⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 21 |
20
|
simp1bi |
⊢ ( 𝐵 ∈ ( 0 [,] π ) → 𝐵 ∈ ℝ ) |
| 22 |
|
recoscl |
⊢ ( 𝐵 ∈ ℝ → ( cos ‘ 𝐵 ) ∈ ℝ ) |
| 23 |
|
recoscl |
⊢ ( 𝐴 ∈ ℝ → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 24 |
|
axlttri |
⊢ ( ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 25 |
22 23 24
|
syl2anr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 26 |
19 21 25
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ¬ ( ( cos ‘ 𝐵 ) = ( cos ‘ 𝐴 ) ∨ ( cos ‘ 𝐴 ) < ( cos ‘ 𝐵 ) ) ) ) |
| 27 |
|
axlttri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 28 |
19 21 27
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ¬ ( 𝐴 = 𝐵 ∨ 𝐵 < 𝐴 ) ) ) |
| 29 |
15 26 28
|
3imtr4d |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) → 𝐴 < 𝐵 ) ) |
| 30 |
5 29
|
impbid |
⊢ ( ( 𝐴 ∈ ( 0 [,] π ) ∧ 𝐵 ∈ ( 0 [,] π ) ) → ( 𝐴 < 𝐵 ↔ ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) ) |