| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cosord.1 |
⊢ ( 𝜑 → 𝐴 ∈ ( 0 [,] π ) ) |
| 2 |
|
cosord.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 0 [,] π ) ) |
| 3 |
|
cosord.3 |
⊢ ( 𝜑 → 𝐴 < 𝐵 ) |
| 4 |
|
0re |
⊢ 0 ∈ ℝ |
| 5 |
|
pire |
⊢ π ∈ ℝ |
| 6 |
4 5
|
elicc2i |
⊢ ( 𝐵 ∈ ( 0 [,] π ) ↔ ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 7 |
2 6
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ∧ 𝐵 ≤ π ) ) |
| 8 |
7
|
simp1d |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 9 |
8
|
recnd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 10 |
4 5
|
elicc2i |
⊢ ( 𝐴 ∈ ( 0 [,] π ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 11 |
1 10
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ 𝐴 ≤ π ) ) |
| 12 |
11
|
simp1d |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 13 |
12
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 14 |
|
subcos |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) = ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ) |
| 15 |
9 13 14
|
syl2anc |
⊢ ( 𝜑 → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) = ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ) |
| 16 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 17 |
8 12
|
readdcld |
⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) ∈ ℝ ) |
| 18 |
17
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ) |
| 19 |
18
|
resincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ∈ ℝ ) |
| 20 |
4
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 21 |
11
|
simp2d |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
| 22 |
20 12 8 21 3
|
lelttrd |
⊢ ( 𝜑 → 0 < 𝐵 ) |
| 23 |
8 12 22 21
|
addgtge0d |
⊢ ( 𝜑 → 0 < ( 𝐵 + 𝐴 ) ) |
| 24 |
|
2re |
⊢ 2 ∈ ℝ |
| 25 |
|
2pos |
⊢ 0 < 2 |
| 26 |
|
divgt0 |
⊢ ( ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 + 𝐴 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 27 |
24 25 26
|
mpanr12 |
⊢ ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 + 𝐴 ) ) → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 28 |
17 23 27
|
syl2anc |
⊢ ( 𝜑 → 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ) |
| 29 |
5
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 30 |
12 8 8 3
|
ltadd2dd |
⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) < ( 𝐵 + 𝐵 ) ) |
| 31 |
9
|
2timesd |
⊢ ( 𝜑 → ( 2 · 𝐵 ) = ( 𝐵 + 𝐵 ) ) |
| 32 |
30 31
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) |
| 33 |
24
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℝ ) |
| 34 |
25
|
a1i |
⊢ ( 𝜑 → 0 < 2 ) |
| 35 |
|
ltdivmul |
⊢ ( ( ( 𝐵 + 𝐴 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ↔ ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 36 |
17 8 33 34 35
|
syl112anc |
⊢ ( 𝜑 → ( ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ↔ ( 𝐵 + 𝐴 ) < ( 2 · 𝐵 ) ) ) |
| 37 |
32 36
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) < 𝐵 ) |
| 38 |
7
|
simp3d |
⊢ ( 𝜑 → 𝐵 ≤ π ) |
| 39 |
18 8 29 37 38
|
ltletrd |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) < π ) |
| 40 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 41 |
5
|
rexri |
⊢ π ∈ ℝ* |
| 42 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ∧ ( ( 𝐵 + 𝐴 ) / 2 ) < π ) ) ) |
| 43 |
40 41 42
|
mp2an |
⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 + 𝐴 ) / 2 ) ∧ ( ( 𝐵 + 𝐴 ) / 2 ) < π ) ) |
| 44 |
18 28 39 43
|
syl3anbrc |
⊢ ( 𝜑 → ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ) |
| 45 |
|
sinq12gt0 |
⊢ ( ( ( 𝐵 + 𝐴 ) / 2 ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ) |
| 46 |
44 45
|
syl |
⊢ ( 𝜑 → 0 < ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ) |
| 47 |
19 46
|
elrpd |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
| 48 |
8 12
|
resubcld |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 49 |
48
|
rehalfcld |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ) |
| 50 |
49
|
resincld |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ℝ ) |
| 51 |
12 8
|
posdifd |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ 0 < ( 𝐵 − 𝐴 ) ) ) |
| 52 |
3 51
|
mpbid |
⊢ ( 𝜑 → 0 < ( 𝐵 − 𝐴 ) ) |
| 53 |
|
divgt0 |
⊢ ( ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 54 |
24 25 53
|
mpanr12 |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ 0 < ( 𝐵 − 𝐴 ) ) → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 55 |
48 52 54
|
syl2anc |
⊢ ( 𝜑 → 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ) |
| 56 |
|
rehalfcl |
⊢ ( π ∈ ℝ → ( π / 2 ) ∈ ℝ ) |
| 57 |
5 56
|
mp1i |
⊢ ( 𝜑 → ( π / 2 ) ∈ ℝ ) |
| 58 |
8 12
|
subge02d |
⊢ ( 𝜑 → ( 0 ≤ 𝐴 ↔ ( 𝐵 − 𝐴 ) ≤ 𝐵 ) ) |
| 59 |
21 58
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ 𝐵 ) |
| 60 |
48 8 29 59 38
|
letrd |
⊢ ( 𝜑 → ( 𝐵 − 𝐴 ) ≤ π ) |
| 61 |
|
lediv1 |
⊢ ( ( ( 𝐵 − 𝐴 ) ∈ ℝ ∧ π ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 𝐵 − 𝐴 ) ≤ π ↔ ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) ) |
| 62 |
48 29 33 34 61
|
syl112anc |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) ≤ π ↔ ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) ) |
| 63 |
60 62
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ≤ ( π / 2 ) ) |
| 64 |
|
pirp |
⊢ π ∈ ℝ+ |
| 65 |
|
rphalflt |
⊢ ( π ∈ ℝ+ → ( π / 2 ) < π ) |
| 66 |
64 65
|
mp1i |
⊢ ( 𝜑 → ( π / 2 ) < π ) |
| 67 |
49 57 29 63 66
|
lelttrd |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) < π ) |
| 68 |
|
elioo2 |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ) → ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ∧ ( ( 𝐵 − 𝐴 ) / 2 ) < π ) ) ) |
| 69 |
40 41 68
|
mp2an |
⊢ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ↔ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ℝ ∧ 0 < ( ( 𝐵 − 𝐴 ) / 2 ) ∧ ( ( 𝐵 − 𝐴 ) / 2 ) < π ) ) |
| 70 |
49 55 67 69
|
syl3anbrc |
⊢ ( 𝜑 → ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) ) |
| 71 |
|
sinq12gt0 |
⊢ ( ( ( 𝐵 − 𝐴 ) / 2 ) ∈ ( 0 (,) π ) → 0 < ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 72 |
70 71
|
syl |
⊢ ( 𝜑 → 0 < ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) |
| 73 |
50 72
|
elrpd |
⊢ ( 𝜑 → ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ∈ ℝ+ ) |
| 74 |
47 73
|
rpmulcld |
⊢ ( 𝜑 → ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ∈ ℝ+ ) |
| 75 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ∈ ℝ+ ) → ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ∈ ℝ+ ) |
| 76 |
16 74 75
|
sylancr |
⊢ ( 𝜑 → ( 2 · ( ( sin ‘ ( ( 𝐵 + 𝐴 ) / 2 ) ) · ( sin ‘ ( ( 𝐵 − 𝐴 ) / 2 ) ) ) ) ∈ ℝ+ ) |
| 77 |
15 76
|
eqeltrd |
⊢ ( 𝜑 → ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) |
| 78 |
8
|
recoscld |
⊢ ( 𝜑 → ( cos ‘ 𝐵 ) ∈ ℝ ) |
| 79 |
12
|
recoscld |
⊢ ( 𝜑 → ( cos ‘ 𝐴 ) ∈ ℝ ) |
| 80 |
|
difrp |
⊢ ( ( ( cos ‘ 𝐵 ) ∈ ℝ ∧ ( cos ‘ 𝐴 ) ∈ ℝ ) → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) ) |
| 81 |
78 79 80
|
syl2anc |
⊢ ( 𝜑 → ( ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ↔ ( ( cos ‘ 𝐴 ) − ( cos ‘ 𝐵 ) ) ∈ ℝ+ ) ) |
| 82 |
77 81
|
mpbird |
⊢ ( 𝜑 → ( cos ‘ 𝐵 ) < ( cos ‘ 𝐴 ) ) |