Metamath Proof Explorer


Theorem cosselrels

Description: Cosets of sets are elements of the relations class. Implies |- ( R e. Rels -> ,R e. Rels ) . (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion cosselrels
|- ( A e. V -> ,~ A e. Rels )

Proof

Step Hyp Ref Expression
1 cossex
 |-  ( A e. V -> ,~ A e. _V )
2 relcoss
 |-  Rel ,~ A
3 elrelsrel
 |-  ( ,~ A e. _V -> ( ,~ A e. Rels <-> Rel ,~ A ) )
4 2 3 mpbiri
 |-  ( ,~ A e. _V -> ,~ A e. Rels )
5 1 4 syl
 |-  ( A e. V -> ,~ A e. Rels )