Metamath Proof Explorer
Description: Cosets of sets are elements of the relations class. Implies
|- ( R e. Rels -> ,R e. Rels ) . (Contributed by Peter Mazsa, 25-Aug-2021)
|
|
Ref |
Expression |
|
Assertion |
cosselrels |
⊢ ( 𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cossex |
⊢ ( 𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ V ) |
2 |
|
relcoss |
⊢ Rel ≀ 𝐴 |
3 |
|
elrelsrel |
⊢ ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴 ) ) |
4 |
2 3
|
mpbiri |
⊢ ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels ) |
5 |
1 4
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ≀ 𝐴 ∈ Rels ) |