Metamath Proof Explorer


Theorem cosselrels

Description: Cosets of sets are elements of the relations class. Implies |- ( R e. Rels -> ,R e. Rels ) . (Contributed by Peter Mazsa, 25-Aug-2021)

Ref Expression
Assertion cosselrels ( 𝐴𝑉 → ≀ 𝐴 ∈ Rels )

Proof

Step Hyp Ref Expression
1 cossex ( 𝐴𝑉 → ≀ 𝐴 ∈ V )
2 relcoss Rel ≀ 𝐴
3 elrelsrel ( ≀ 𝐴 ∈ V → ( ≀ 𝐴 ∈ Rels ↔ Rel ≀ 𝐴 ) )
4 2 3 mpbiri ( ≀ 𝐴 ∈ V → ≀ 𝐴 ∈ Rels )
5 1 4 syl ( 𝐴𝑉 → ≀ 𝐴 ∈ Rels )