Metamath Proof Explorer


Theorem cringcatALTV

Description: The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses crhmsubcALTV.c
|- C = ( U i^i CRing )
crhmsubcALTV.j
|- J = ( r e. C , s e. C |-> ( r RingHom s ) )
Assertion cringcatALTV
|- ( U e. V -> ( ( RingCatALTV ` U ) |`cat J ) e. Cat )

Proof

Step Hyp Ref Expression
1 crhmsubcALTV.c
 |-  C = ( U i^i CRing )
2 crhmsubcALTV.j
 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )
3 eqid
 |-  ( ( RingCatALTV ` U ) |`cat J ) = ( ( RingCatALTV ` U ) |`cat J )
4 1 2 crhmsubcALTV
 |-  ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) )
5 3 4 subccat
 |-  ( U e. V -> ( ( RingCatALTV ` U ) |`cat J ) e. Cat )