Metamath Proof Explorer


Theorem drhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of division ring homomorphisms is a "subcategory" of the category of (unital) rings. (Contributed by AV, 20-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses drhmsubcALTV.c
|- C = ( U i^i DivRing )
drhmsubcALTV.j
|- J = ( r e. C , s e. C |-> ( r RingHom s ) )
Assertion drhmsubcALTV
|- ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) )

Proof

Step Hyp Ref Expression
1 drhmsubcALTV.c
 |-  C = ( U i^i DivRing )
2 drhmsubcALTV.j
 |-  J = ( r e. C , s e. C |-> ( r RingHom s ) )
3 drngring
 |-  ( r e. DivRing -> r e. Ring )
4 3 rgen
 |-  A. r e. DivRing r e. Ring
5 4 1 2 srhmsubcALTV
 |-  ( U e. V -> J e. ( Subcat ` ( RingCatALTV ` U ) ) )