Metamath Proof Explorer


Theorem cringcatALTV

Description: The restriction of the category of (unital) rings to the set of commutative ring homomorphisms is a category, the "category of commutative rings". (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses crhmsubcALTV.c 𝐶 = ( 𝑈 ∩ CRing )
crhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion cringcatALTV ( 𝑈𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )

Proof

Step Hyp Ref Expression
1 crhmsubcALTV.c 𝐶 = ( 𝑈 ∩ CRing )
2 crhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
3 eqid ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) = ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 )
4 1 2 crhmsubcALTV ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) )
5 3 4 subccat ( 𝑈𝑉 → ( ( RingCatALTV ‘ 𝑈 ) ↾cat 𝐽 ) ∈ Cat )