Metamath Proof Explorer


Theorem crhmsubcALTV

Description: According to df-subc , the subcategories ( SubcatC ) of a category C are subsets of the homomorphisms of C (see subcssc and subcss2 ). Therefore, the set of commutative ring homomorphisms (i.e. ring homomorphisms from a commutative ring to a commutative ring) is a "subcategory" of the category of (unital) rings. (Contributed by AV, 19-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses crhmsubcALTV.c 𝐶 = ( 𝑈 ∩ CRing )
crhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
Assertion crhmsubcALTV ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) )

Proof

Step Hyp Ref Expression
1 crhmsubcALTV.c 𝐶 = ( 𝑈 ∩ CRing )
2 crhmsubcALTV.j 𝐽 = ( 𝑟𝐶 , 𝑠𝐶 ↦ ( 𝑟 RingHom 𝑠 ) )
3 crngring ( 𝑟 ∈ CRing → 𝑟 ∈ Ring )
4 3 rgen 𝑟 ∈ CRing 𝑟 ∈ Ring
5 4 1 2 srhmsubcALTV ( 𝑈𝑉𝐽 ∈ ( Subcat ‘ ( RingCatALTV ‘ 𝑈 ) ) )