| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cringmul32d.b |
|- B = ( Base ` R ) |
| 2 |
|
cringmul32d.t |
|- .x. = ( .r ` R ) |
| 3 |
|
cringmul32d.r |
|- ( ph -> R e. CRing ) |
| 4 |
|
cringmul32d.x |
|- ( ph -> X e. B ) |
| 5 |
|
cringmul32d.y |
|- ( ph -> Y e. B ) |
| 6 |
|
cringmul32d.z |
|- ( ph -> Z e. B ) |
| 7 |
1 2 3 5 6
|
crngcomd |
|- ( ph -> ( Y .x. Z ) = ( Z .x. Y ) ) |
| 8 |
7
|
oveq2d |
|- ( ph -> ( X .x. ( Y .x. Z ) ) = ( X .x. ( Z .x. Y ) ) ) |
| 9 |
3
|
crngringd |
|- ( ph -> R e. Ring ) |
| 10 |
1 2 9 4 5 6
|
ringassd |
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( X .x. ( Y .x. Z ) ) ) |
| 11 |
1 2 9 4 6 5
|
ringassd |
|- ( ph -> ( ( X .x. Z ) .x. Y ) = ( X .x. ( Z .x. Y ) ) ) |
| 12 |
8 10 11
|
3eqtr4d |
|- ( ph -> ( ( X .x. Y ) .x. Z ) = ( ( X .x. Z ) .x. Y ) ) |