Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | crngbascntr.b | |- B = ( Base ` G ) |
|
| crngbascntr.z | |- Z = ( Cntr ` ( mulGrp ` G ) ) |
||
| Assertion | crngbascntr | |- ( G e. CRing -> B = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngbascntr.b | |- B = ( Base ` G ) |
|
| 2 | crngbascntr.z | |- Z = ( Cntr ` ( mulGrp ` G ) ) |
|
| 3 | eqid | |- ( mulGrp ` G ) = ( mulGrp ` G ) |
|
| 4 | 3 | crngmgp | |- ( G e. CRing -> ( mulGrp ` G ) e. CMnd ) |
| 5 | 3 1 | mgpbas | |- B = ( Base ` ( mulGrp ` G ) ) |
| 6 | 5 2 | cmnbascntr | |- ( ( mulGrp ` G ) e. CMnd -> B = Z ) |
| 7 | 4 6 | syl | |- ( G e. CRing -> B = Z ) |