Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ ( B \ C ) = [_ A / x ]_ ( B \ C ) ) |
2 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ B = [_ A / x ]_ B ) |
3 |
|
csbeq1 |
|- ( y = A -> [_ y / x ]_ C = [_ A / x ]_ C ) |
4 |
2 3
|
difeq12d |
|- ( y = A -> ( [_ y / x ]_ B \ [_ y / x ]_ C ) = ( [_ A / x ]_ B \ [_ A / x ]_ C ) ) |
5 |
1 4
|
eqeq12d |
|- ( y = A -> ( [_ y / x ]_ ( B \ C ) = ( [_ y / x ]_ B \ [_ y / x ]_ C ) <-> [_ A / x ]_ ( B \ C ) = ( [_ A / x ]_ B \ [_ A / x ]_ C ) ) ) |
6 |
|
vex |
|- y e. _V |
7 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ C |
9 |
7 8
|
nfdif |
|- F/_ x ( [_ y / x ]_ B \ [_ y / x ]_ C ) |
10 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
11 |
|
csbeq1a |
|- ( x = y -> C = [_ y / x ]_ C ) |
12 |
10 11
|
difeq12d |
|- ( x = y -> ( B \ C ) = ( [_ y / x ]_ B \ [_ y / x ]_ C ) ) |
13 |
6 9 12
|
csbief |
|- [_ y / x ]_ ( B \ C ) = ( [_ y / x ]_ B \ [_ y / x ]_ C ) |
14 |
5 13
|
vtoclg |
|- ( A e. _V -> [_ A / x ]_ ( B \ C ) = ( [_ A / x ]_ B \ [_ A / x ]_ C ) ) |
15 |
|
dif0 |
|- ( (/) \ (/) ) = (/) |
16 |
15
|
a1i |
|- ( -. A e. _V -> ( (/) \ (/) ) = (/) ) |
17 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ B = (/) ) |
18 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ C = (/) ) |
19 |
17 18
|
difeq12d |
|- ( -. A e. _V -> ( [_ A / x ]_ B \ [_ A / x ]_ C ) = ( (/) \ (/) ) ) |
20 |
|
csbprc |
|- ( -. A e. _V -> [_ A / x ]_ ( B \ C ) = (/) ) |
21 |
16 19 20
|
3eqtr4rd |
|- ( -. A e. _V -> [_ A / x ]_ ( B \ C ) = ( [_ A / x ]_ B \ [_ A / x ]_ C ) ) |
22 |
14 21
|
pm2.61i |
|- [_ A / x ]_ ( B \ C ) = ( [_ A / x ]_ B \ [_ A / x ]_ C ) |