| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) ) |
| 2 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 3 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
| 4 |
2 3
|
difeq12d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 5 |
1 4
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
| 6 |
|
vex |
⊢ 𝑦 ∈ V |
| 7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
| 8 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
| 9 |
7 8
|
nfdif |
⊢ Ⅎ 𝑥 ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 10 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
| 11 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 12 |
10 11
|
difeq12d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
| 13 |
6 9 12
|
csbief |
⊢ ⦋ 𝑦 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
| 14 |
5 13
|
vtoclg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 15 |
|
dif0 |
⊢ ( ∅ ∖ ∅ ) = ∅ |
| 16 |
15
|
a1i |
⊢ ( ¬ 𝐴 ∈ V → ( ∅ ∖ ∅ ) = ∅ ) |
| 17 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
| 18 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
| 19 |
17 18
|
difeq12d |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( ∅ ∖ ∅ ) ) |
| 20 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ∅ ) |
| 21 |
16 19 20
|
3eqtr4rd |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
| 22 |
14 21
|
pm2.61i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 ∖ 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ∖ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |