Description: Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | csbeq12 | |- ( ( A = B /\ A. x C = D ) -> [_ A / x ]_ C = [_ B / x ]_ D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq2 | |- ( A. x C = D -> [_ A / x ]_ C = [_ A / x ]_ D ) |
|
| 2 | csbeq1 | |- ( A = B -> [_ A / x ]_ D = [_ B / x ]_ D ) |
|
| 3 | 1 2 | sylan9eqr | |- ( ( A = B /\ A. x C = D ) -> [_ A / x ]_ C = [_ B / x ]_ D ) |