Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | sbeqi | |- ( ( x = y /\ A. z ( ph <-> ps ) ) -> ( [ x / z ] ph <-> [ y / z ] ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spsbbi | |- ( A. z ( ph <-> ps ) -> ( [ x / z ] ph <-> [ x / z ] ps ) ) |
|
2 | sbequ | |- ( x = y -> ( [ x / z ] ps <-> [ y / z ] ps ) ) |
|
3 | 1 2 | sylan9bbr | |- ( ( x = y /\ A. z ( ph <-> ps ) ) -> ( [ x / z ] ph <-> [ y / z ] ps ) ) |