Metamath Proof Explorer


Theorem ralbi12f

Description: Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses ralbi12f.1
|- F/_ x A
ralbi12f.2
|- F/_ x B
Assertion ralbi12f
|- ( ( A = B /\ A. x e. A ( ph <-> ps ) ) -> ( A. x e. A ph <-> A. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 ralbi12f.1
 |-  F/_ x A
2 ralbi12f.2
 |-  F/_ x B
3 ralbi
 |-  ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) )
4 1 2 raleqf
 |-  ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) )
5 3 4 sylan9bbr
 |-  ( ( A = B /\ A. x e. A ( ph <-> ps ) ) -> ( A. x e. A ph <-> A. x e. B ps ) )