Description: Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralbi12f.1 | |- F/_ x A |
|
| ralbi12f.2 | |- F/_ x B |
||
| Assertion | ralbi12f | |- ( ( A = B /\ A. x e. A ( ph <-> ps ) ) -> ( A. x e. A ph <-> A. x e. B ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbi12f.1 | |- F/_ x A |
|
| 2 | ralbi12f.2 | |- F/_ x B |
|
| 3 | ralbi | |- ( A. x e. A ( ph <-> ps ) -> ( A. x e. A ph <-> A. x e. A ps ) ) |
|
| 4 | 1 2 | raleqf | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
| 5 | 3 4 | sylan9bbr | |- ( ( A = B /\ A. x e. A ( ph <-> ps ) ) -> ( A. x e. A ph <-> A. x e. B ps ) ) |