Metamath Proof Explorer


Theorem ralbi12f

Description: Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Hypotheses ralbi12f.1 _xA
ralbi12f.2 _xB
Assertion ralbi12f A=BxAφψxAφxBψ

Proof

Step Hyp Ref Expression
1 ralbi12f.1 _xA
2 ralbi12f.2 _xB
3 ralbi xAφψxAφxAψ
4 1 2 raleqf A=BxAψxBψ
5 3 4 sylan9bbr A=BxAφψxAφxBψ