Metamath Proof Explorer


Theorem sbeqi

Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018)

Ref Expression
Assertion sbeqi x = y z φ ψ x z φ y z ψ

Proof

Step Hyp Ref Expression
1 spsbbi z φ ψ x z φ x z ψ
2 sbequ x = y x z ψ y z ψ
3 1 2 sylan9bbr x = y z φ ψ x z φ y z ψ