Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbeqi | ⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) ) → ( [ 𝑥 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑧 ] 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi | ⊢ ( ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) → ( [ 𝑥 / 𝑧 ] 𝜑 ↔ [ 𝑥 / 𝑧 ] 𝜓 ) ) | |
| 2 | sbequ | ⊢ ( 𝑥 = 𝑦 → ( [ 𝑥 / 𝑧 ] 𝜓 ↔ [ 𝑦 / 𝑧 ] 𝜓 ) ) | |
| 3 | 1 2 | sylan9bbr | ⊢ ( ( 𝑥 = 𝑦 ∧ ∀ 𝑧 ( 𝜑 ↔ 𝜓 ) ) → ( [ 𝑥 / 𝑧 ] 𝜑 ↔ [ 𝑦 / 𝑧 ] 𝜓 ) ) |