Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cusgrcplgr | |- ( G e. ComplUSGraph -> G e. ComplGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr | |- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
|
| 2 | 1 | simprbi | |- ( G e. ComplUSGraph -> G e. ComplGraph ) |