Metamath Proof Explorer


Theorem iscusgrvtx

Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis iscusgrvtx.v
|- V = ( Vtx ` G )
Assertion iscusgrvtx
|- ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) )

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v
 |-  V = ( Vtx ` G )
2 iscusgr
 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) )
3 1 iscplgr
 |-  ( G e. USGraph -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) )
4 3 pm5.32i
 |-  ( ( G e. USGraph /\ G e. ComplGraph ) <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) )
5 2 4 bitri
 |-  ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) )