Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscusgrvtx.v | |- V = ( Vtx ` G ) |
|
Assertion | iscusgrvtx | |- ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgrvtx.v | |- V = ( Vtx ` G ) |
|
2 | iscusgr | |- ( G e. ComplUSGraph <-> ( G e. USGraph /\ G e. ComplGraph ) ) |
|
3 | 1 | iscplgr | |- ( G e. USGraph -> ( G e. ComplGraph <-> A. v e. V v e. ( UnivVtx ` G ) ) ) |
4 | 3 | pm5.32i | |- ( ( G e. USGraph /\ G e. ComplGraph ) <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) ) |
5 | 2 4 | bitri | |- ( G e. ComplUSGraph <-> ( G e. USGraph /\ A. v e. V v e. ( UnivVtx ` G ) ) ) |