Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscusgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | iscusgrvtx | ⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgrvtx.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | iscusgr | ⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) | |
3 | 1 | iscplgr | ⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
4 | 3 | pm5.32i | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
5 | 2 4 | bitri | ⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |