Metamath Proof Explorer


Theorem iscusgrvtx

Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis iscusgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion iscusgrvtx ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v 𝑉 = ( Vtx ‘ 𝐺 )
2 iscusgr ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) )
3 1 iscplgr ( 𝐺 ∈ USGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
4 3 pm5.32i ( ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )
5 2 4 bitri ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ ∀ 𝑣𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) )