Metamath Proof Explorer


Theorem iscusgrvtx

Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020)

Ref Expression
Hypothesis iscusgrvtx.v V=VtxG
Assertion iscusgrvtx GComplUSGraphGUSGraphvVvUnivVtxG

Proof

Step Hyp Ref Expression
1 iscusgrvtx.v V=VtxG
2 iscusgr GComplUSGraphGUSGraphGComplGraph
3 1 iscplgr GUSGraphGComplGraphvVvUnivVtxG
4 3 pm5.32i GUSGraphGComplGraphGUSGraphvVvUnivVtxG
5 2 4 bitri GComplUSGraphGUSGraphvVvUnivVtxG