Metamath Proof Explorer


Theorem cusgrcplgr

Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020)

Ref Expression
Assertion cusgrcplgr ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph )

Proof

Step Hyp Ref Expression
1 iscusgr ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) )
2 1 simprbi ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph )