Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cusgrcplgr | ⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr | ⊢ ( 𝐺 ∈ ComplUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph ) ) | |
| 2 | 1 | simprbi | ⊢ ( 𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph ) |