Metamath Proof Explorer


Theorem cutpos

Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cutpos.1
|- ( ph -> A e. No )
cutpos.2
|- ( ph -> 0s 
Assertion cutpos
|- ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s 

Proof

Step Hyp Ref Expression
1 cutpos.1
 |-  ( ph -> A e. No )
2 cutpos.2
 |-  ( ph -> 0s 
3 lltropt
 |-  ( _Left ` A ) <
4 3 a1i
 |-  ( ph -> ( _Left ` A ) <
5 lrcut
 |-  ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A )
6 1 5 syl
 |-  ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A )
7 6 eqcomd
 |-  ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) )
8 1 2 0elleft
 |-  ( ph -> 0s e. ( _Left ` A ) )
9 4 7 8 cutlt
 |-  ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s