Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cutpos.1 | |- ( ph -> A e. No ) |
|
cutpos.2 | |- ( ph -> 0s |
||
Assertion | cutpos | |- ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cutpos.1 | |- ( ph -> A e. No ) |
|
2 | cutpos.2 | |- ( ph -> 0s |
|
3 | lltropt | |- ( _Left ` A ) < |
|
4 | 3 | a1i | |- ( ph -> ( _Left ` A ) < |
5 | lrcut | |- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
|
6 | 1 5 | syl | |- ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
7 | 6 | eqcomd | |- ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) |
8 | 1 2 | 0elleft | |- ( ph -> 0s e. ( _Left ` A ) ) |
9 | 4 7 8 | cutlt | |- ( ph -> A = ( ( { 0s } u. { x e. ( _Left ` A ) | 0s |