Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cutpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
cutpos.2 | ⊢ ( 𝜑 → 0s <s 𝐴 ) | ||
Assertion | cutpos | ⊢ ( 𝜑 → 𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cutpos.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | cutpos.2 | ⊢ ( 𝜑 → 0s <s 𝐴 ) | |
3 | lltropt | ⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) | |
4 | 3 | a1i | ⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
5 | lrcut | ⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) | |
6 | 1 5 | syl | ⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
7 | 6 | eqcomd | ⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
8 | 1 2 | 0elleft | ⊢ ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) ) |
9 | 4 7 8 | cutlt | ⊢ ( 𝜑 → 𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) ) |