Metamath Proof Explorer


Theorem cutpos

Description: Reduce the elements of a cut for a positive number. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cutpos.1 ( 𝜑𝐴 No )
cutpos.2 ( 𝜑 → 0s <s 𝐴 )
Assertion cutpos ( 𝜑𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 cutpos.1 ( 𝜑𝐴 No )
2 cutpos.2 ( 𝜑 → 0s <s 𝐴 )
3 lltropt ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 )
4 3 a1i ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
5 lrcut ( 𝐴 No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
6 1 5 syl ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
7 6 eqcomd ( 𝜑𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) )
8 1 2 0elleft ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) )
9 4 7 8 cutlt ( 𝜑𝐴 = ( ( { 0s } ∪ { 𝑥 ∈ ( L ‘ 𝐴 ) ∣ 0s <s 𝑥 } ) |s ( R ‘ 𝐴 ) ) )