Metamath Proof Explorer


Theorem cutlt

Description: Eliminating all elements below a given element of a cut does not affect the cut. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cutlt.1 âŠĒ ( 𝜑 → ðŋ <<s 𝑅 )
cutlt.2 âŠĒ ( 𝜑 → ðī = ( ðŋ |s 𝑅 ) )
cutlt.3 âŠĒ ( 𝜑 → 𝑋 ∈ ðŋ )
Assertion cutlt ( 𝜑 → ðī = ( ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) |s 𝑅 ) )

Proof

Step Hyp Ref Expression
1 cutlt.1 âŠĒ ( 𝜑 → ðŋ <<s 𝑅 )
2 cutlt.2 âŠĒ ( 𝜑 → ðī = ( ðŋ |s 𝑅 ) )
3 cutlt.3 âŠĒ ( 𝜑 → 𝑋 ∈ ðŋ )
4 ssltss1 âŠĒ ( ðŋ <<s 𝑅 → ðŋ ⊆ No )
5 1 4 syl âŠĒ ( 𝜑 → ðŋ ⊆ No )
6 5 3 sseldd âŠĒ ( 𝜑 → 𝑋 ∈ No )
7 snelpwi âŠĒ ( 𝑋 ∈ No → { 𝑋 } ∈ ð’Ŧ No )
8 6 7 syl âŠĒ ( 𝜑 → { 𝑋 } ∈ ð’Ŧ No )
9 ssltex1 âŠĒ ( ðŋ <<s 𝑅 → ðŋ ∈ V )
10 rabexg âŠĒ ( ðŋ ∈ V → { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ∈ V )
11 1 9 10 3syl âŠĒ ( 𝜑 → { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ∈ V )
12 ssrab2 âŠĒ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ⊆ ðŋ
13 12 5 sstrid âŠĒ ( 𝜑 → { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ⊆ No )
14 11 13 elpwd âŠĒ ( 𝜑 → { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ∈ ð’Ŧ No )
15 pwuncl âŠĒ ( ( { 𝑋 } ∈ ð’Ŧ No ∧ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ∈ ð’Ŧ No ) → ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ∈ ð’Ŧ No )
16 8 14 15 syl2anc âŠĒ ( 𝜑 → ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ∈ ð’Ŧ No )
17 ssltex2 âŠĒ ( ðŋ <<s 𝑅 → 𝑅 ∈ V )
18 1 17 syl âŠĒ ( 𝜑 → 𝑅 ∈ V )
19 ssltss2 âŠĒ ( ðŋ <<s 𝑅 → 𝑅 ⊆ No )
20 1 19 syl âŠĒ ( 𝜑 → 𝑅 ⊆ No )
21 18 20 elpwd âŠĒ ( 𝜑 → 𝑅 ∈ ð’Ŧ No )
22 snidg âŠĒ ( 𝑋 ∈ ðŋ → 𝑋 ∈ { 𝑋 } )
23 elun1 âŠĒ ( 𝑋 ∈ { 𝑋 } → 𝑋 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) )
24 3 22 23 3syl âŠĒ ( 𝜑 → 𝑋 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) )
25 24 adantr âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → 𝑋 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) )
26 breq2 âŠĒ ( 𝑏 = 𝑋 → ( 𝑎 â‰Īs 𝑏 ↔ 𝑎 â‰Īs 𝑋 ) )
27 26 rspcev âŠĒ ( ( 𝑋 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ∧ 𝑎 â‰Īs 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
28 25 27 sylan âŠĒ ( ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) ∧ 𝑎 â‰Īs 𝑋 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
29 28 ex âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → ( 𝑎 â‰Īs 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 ) )
30 6 adantr âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → 𝑋 ∈ No )
31 5 sselda âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → 𝑎 ∈ No )
32 sltnle âŠĒ ( ( 𝑋 ∈ No ∧ 𝑎 ∈ No ) → ( 𝑋 <s 𝑎 ↔ ÂŽ 𝑎 â‰Īs 𝑋 ) )
33 30 31 32 syl2anc âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → ( 𝑋 <s 𝑎 ↔ ÂŽ 𝑎 â‰Īs 𝑋 ) )
34 breq2 âŠĒ ( ð‘Ķ = 𝑎 → ( 𝑋 <s ð‘Ķ ↔ 𝑋 <s 𝑎 ) )
35 34 elrab âŠĒ ( 𝑎 ∈ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ↔ ( 𝑎 ∈ ðŋ ∧ 𝑋 <s 𝑎 ) )
36 elun2 âŠĒ ( 𝑎 ∈ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } → 𝑎 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) )
37 35 36 sylbir âŠĒ ( ( 𝑎 ∈ ðŋ ∧ 𝑋 <s 𝑎 ) → 𝑎 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) )
38 slerflex âŠĒ ( 𝑎 ∈ No → 𝑎 â‰Īs 𝑎 )
39 31 38 syl âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → 𝑎 â‰Īs 𝑎 )
40 39 adantrr âŠĒ ( ( 𝜑 ∧ ( 𝑎 ∈ ðŋ ∧ 𝑋 <s 𝑎 ) ) → 𝑎 â‰Īs 𝑎 )
41 breq2 âŠĒ ( 𝑏 = 𝑎 → ( 𝑎 â‰Īs 𝑏 ↔ 𝑎 â‰Īs 𝑎 ) )
42 41 rspcev âŠĒ ( ( 𝑎 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ∧ 𝑎 â‰Īs 𝑎 ) → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
43 37 40 42 syl2an2 âŠĒ ( ( 𝜑 ∧ ( 𝑎 ∈ ðŋ ∧ 𝑋 <s 𝑎 ) ) → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
44 43 expr âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → ( 𝑋 <s 𝑎 → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 ) )
45 33 44 sylbird âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → ( ÂŽ 𝑎 â‰Īs 𝑋 → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 ) )
46 29 45 pm2.61d âŠĒ ( ( 𝜑 ∧ 𝑎 ∈ ðŋ ) → ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
47 46 ralrimiva âŠĒ ( 𝜑 → ∀ 𝑎 ∈ ðŋ ∃ 𝑏 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) 𝑎 â‰Īs 𝑏 )
48 ssidd âŠĒ ( 𝜑 → 𝑅 ⊆ 𝑅 )
49 20 48 coiniss âŠĒ ( 𝜑 → ∀ 𝑎 ∈ 𝑅 ∃ 𝑏 ∈ 𝑅 𝑏 â‰Īs 𝑎 )
50 3 snssd âŠĒ ( 𝜑 → { 𝑋 } ⊆ ðŋ )
51 12 a1i âŠĒ ( 𝜑 → { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ⊆ ðŋ )
52 50 51 unssd âŠĒ ( 𝜑 → ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ⊆ ðŋ )
53 5 52 cofss âŠĒ ( 𝜑 → ∀ 𝑎 ∈ ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) ∃ 𝑏 ∈ ðŋ 𝑎 â‰Īs 𝑏 )
54 1 16 21 47 49 53 49 cofcut2d âŠĒ ( 𝜑 → ( ðŋ |s 𝑅 ) = ( ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) |s 𝑅 ) )
55 2 54 eqtrd âŠĒ ( 𝜑 → ðī = ( ( { 𝑋 } ∊ { ð‘Ķ ∈ ðŋ âˆĢ 𝑋 <s ð‘Ķ } ) |s 𝑅 ) )