Metamath Proof Explorer


Theorem cofss

Description: Cofinality for a subset. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses cofss.1 âŠĒ ( 𝜑 → ðī ⊆ No )
cofss.2 âŠĒ ( 𝜑 → ðĩ ⊆ ðī )
Assertion cofss ( 𝜑 → ∀ ð‘Ĩ ∈ ðĩ ∃ ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ )

Proof

Step Hyp Ref Expression
1 cofss.1 âŠĒ ( 𝜑 → ðī ⊆ No )
2 cofss.2 âŠĒ ( 𝜑 → ðĩ ⊆ ðī )
3 2 sselda âŠĒ ( ( 𝜑 ∧ 𝑧 ∈ ðĩ ) → 𝑧 ∈ ðī )
4 2 1 sstrd âŠĒ ( 𝜑 → ðĩ ⊆ No )
5 4 sselda âŠĒ ( ( 𝜑 ∧ 𝑧 ∈ ðĩ ) → 𝑧 ∈ No )
6 slerflex âŠĒ ( 𝑧 ∈ No → 𝑧 â‰Īs 𝑧 )
7 5 6 syl âŠĒ ( ( 𝜑 ∧ 𝑧 ∈ ðĩ ) → 𝑧 â‰Īs 𝑧 )
8 breq2 âŠĒ ( ð‘Ķ = 𝑧 → ( 𝑧 â‰Īs ð‘Ķ ↔ 𝑧 â‰Īs 𝑧 ) )
9 8 rspcev âŠĒ ( ( 𝑧 ∈ ðī ∧ 𝑧 â‰Īs 𝑧 ) → ∃ ð‘Ķ ∈ ðī 𝑧 â‰Īs ð‘Ķ )
10 3 7 9 syl2anc âŠĒ ( ( 𝜑 ∧ 𝑧 ∈ ðĩ ) → ∃ ð‘Ķ ∈ ðī 𝑧 â‰Īs ð‘Ķ )
11 10 ralrimiva âŠĒ ( 𝜑 → ∀ 𝑧 ∈ ðĩ ∃ ð‘Ķ ∈ ðī 𝑧 â‰Īs ð‘Ķ )
12 breq1 âŠĒ ( ð‘Ĩ = 𝑧 → ( ð‘Ĩ â‰Īs ð‘Ķ ↔ 𝑧 â‰Īs ð‘Ķ ) )
13 12 rexbidv âŠĒ ( ð‘Ĩ = 𝑧 → ( ∃ ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ ↔ ∃ ð‘Ķ ∈ ðī 𝑧 â‰Īs ð‘Ķ ) )
14 13 cbvralvw âŠĒ ( ∀ ð‘Ĩ ∈ ðĩ ∃ ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ ↔ ∀ 𝑧 ∈ ðĩ ∃ ð‘Ķ ∈ ðī 𝑧 â‰Īs ð‘Ķ )
15 11 14 sylibr âŠĒ ( 𝜑 → ∀ ð‘Ĩ ∈ ðĩ ∃ ð‘Ķ ∈ ðī ð‘Ĩ â‰Īs ð‘Ķ )