Metamath Proof Explorer


Theorem 0elleft

Description: Zero is in the left set of any positive number. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses 0elleft.1 ( 𝜑𝐴 No )
0elleft.2 ( 𝜑 → 0s <s 𝐴 )
Assertion 0elleft ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 0elleft.1 ( 𝜑𝐴 No )
2 0elleft.2 ( 𝜑 → 0s <s 𝐴 )
3 2 sgt0ne0d ( 𝜑𝐴 ≠ 0s )
4 1 3 0elold ( 𝜑 → 0s ∈ ( O ‘ ( bday 𝐴 ) ) )
5 breq1 ( 𝑥 = 0s → ( 𝑥 <s 𝐴 ↔ 0s <s 𝐴 ) )
6 leftval ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday 𝐴 ) ) ∣ 𝑥 <s 𝐴 }
7 5 6 elrab2 ( 0s ∈ ( L ‘ 𝐴 ) ↔ ( 0s ∈ ( O ‘ ( bday 𝐴 ) ) ∧ 0s <s 𝐴 ) )
8 4 2 7 sylanbrc ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) )