Description: Zero is in the left set of any positive number. (Contributed by Scott Fenton, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0elleft.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 0elleft.2 | ⊢ ( 𝜑 → 0s <s 𝐴 ) | ||
| Assertion | 0elleft | ⊢ ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elleft.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | 0elleft.2 | ⊢ ( 𝜑 → 0s <s 𝐴 ) | |
| 3 | 2 | sgt0ne0d | ⊢ ( 𝜑 → 𝐴 ≠ 0s ) |
| 4 | 1 3 | 0elold | ⊢ ( 𝜑 → 0s ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) |
| 5 | breq1 | ⊢ ( 𝑥 = 0s → ( 𝑥 <s 𝐴 ↔ 0s <s 𝐴 ) ) | |
| 6 | leftval | ⊢ ( L ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝑥 <s 𝐴 } | |
| 7 | 5 6 | elrab2 | ⊢ ( 0s ∈ ( L ‘ 𝐴 ) ↔ ( 0s ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 0s <s 𝐴 ) ) |
| 8 | 4 2 7 | sylanbrc | ⊢ ( 𝜑 → 0s ∈ ( L ‘ 𝐴 ) ) |