Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0elright.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 0elright.2 | ⊢ ( 𝜑 → 𝐴 <s 0s ) | ||
| Assertion | 0elright | ⊢ ( 𝜑 → 0s ∈ ( R ‘ 𝐴 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0elright.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | 0elright.2 | ⊢ ( 𝜑 → 𝐴 <s 0s ) | |
| 3 | sltne | ⊢ ( ( 𝐴 ∈ No ∧ 𝐴 <s 0s ) → 0s ≠ 𝐴 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → 0s ≠ 𝐴 ) | 
| 5 | 4 | necomd | ⊢ ( 𝜑 → 𝐴 ≠ 0s ) | 
| 6 | 1 5 | 0elold | ⊢ ( 𝜑 → 0s ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ) | 
| 7 | breq2 | ⊢ ( 𝑥 = 0s → ( 𝐴 <s 𝑥 ↔ 𝐴 <s 0s ) ) | |
| 8 | rightval | ⊢ ( R ‘ 𝐴 ) = { 𝑥 ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∣ 𝐴 <s 𝑥 } | |
| 9 | 7 8 | elrab2 | ⊢ ( 0s ∈ ( R ‘ 𝐴 ) ↔ ( 0s ∈ ( O ‘ ( bday ‘ 𝐴 ) ) ∧ 𝐴 <s 0s ) ) | 
| 10 | 6 2 9 | sylanbrc | ⊢ ( 𝜑 → 0s ∈ ( R ‘ 𝐴 ) ) |