Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0elright.1 | |- ( ph -> A e. No ) | |
| 0elright.2 | |- ( ph -> A | ||
| Assertion | 0elright | |- ( ph -> 0s e. ( _Right ` A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0elright.1 | |- ( ph -> A e. No ) | |
| 2 | 0elright.2 | |- ( ph -> A | |
| 3 | sltne | |- ( ( A e. No /\ A | |
| 4 | 1 2 3 | syl2anc | |- ( ph -> 0s =/= A ) | 
| 5 | 4 | necomd | |- ( ph -> A =/= 0s ) | 
| 6 | 1 5 | 0elold | |- ( ph -> 0s e. ( _Old ` ( bday ` A ) ) ) | 
| 7 | breq2 | |- ( x = 0s -> ( A | |
| 8 | rightval |  |-  ( _Right ` A ) = { x e. ( _Old ` ( bday ` A ) ) | A  | |
| 9 | 7 8 | elrab2 | |- ( 0s e. ( _Right ` A ) <-> ( 0s e. ( _Old ` ( bday ` A ) ) /\ A | 
| 10 | 6 2 9 | sylanbrc | |- ( ph -> 0s e. ( _Right ` A ) ) |