Description: Zero is in the right set of any negative number. (Contributed by Scott Fenton, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 0elright.1 | |- ( ph -> A e. No ) |
|
| 0elright.2 | |- ( ph -> A |
||
| Assertion | 0elright | |- ( ph -> 0s e. ( _Right ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elright.1 | |- ( ph -> A e. No ) |
|
| 2 | 0elright.2 | |- ( ph -> A |
|
| 3 | sltne | |- ( ( A e. No /\ A |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> 0s =/= A ) |
| 5 | 4 | necomd | |- ( ph -> A =/= 0s ) |
| 6 | 1 5 | 0elold | |- ( ph -> 0s e. ( _Old ` ( bday ` A ) ) ) |
| 7 | elright | |- ( 0s e. ( _Right ` A ) <-> ( 0s e. ( _Old ` ( bday ` A ) ) /\ A |
|
| 8 | 6 2 7 | sylanbrc | |- ( ph -> 0s e. ( _Right ` A ) ) |