| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑥  =  𝑦  →  (  M  ‘ 𝑥 )  =  (  M  ‘ 𝑦 ) ) | 
						
							| 2 | 1 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( (  M  ‘ 𝑥 )  ∈  Fin  ↔  (  M  ‘ 𝑦 )  ∈  Fin ) ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑥  =  𝐴  →  (  M  ‘ 𝑥 )  =  (  M  ‘ 𝐴 ) ) | 
						
							| 4 | 3 | eleq1d | ⊢ ( 𝑥  =  𝐴  →  ( (  M  ‘ 𝑥 )  ∈  Fin  ↔  (  M  ‘ 𝐴 )  ∈  Fin ) ) | 
						
							| 5 |  | nnon | ⊢ ( 𝑥  ∈  ω  →  𝑥  ∈  On ) | 
						
							| 6 |  | madeval | ⊢ ( 𝑥  ∈  On  →  (  M  ‘ 𝑥 )  =  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝑥  ∈  ω  →  (  M  ‘ 𝑥 )  =  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  (  M  ‘ 𝑥 )  =  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) ) ) | 
						
							| 9 |  | madef | ⊢  M  : On ⟶ 𝒫   No | 
						
							| 10 |  | ffun | ⊢ (  M  : On ⟶ 𝒫   No   →  Fun   M  ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ Fun   M | 
						
							| 12 |  | nnfi | ⊢ ( 𝑥  ∈  ω  →  𝑥  ∈  Fin ) | 
						
							| 13 |  | imafi | ⊢ ( ( Fun   M   ∧  𝑥  ∈  Fin )  →  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 14 | 11 12 13 | sylancr | ⊢ ( 𝑥  ∈  ω  →  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 15 | 14 | adantr | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 16 |  | onss | ⊢ ( 𝑥  ∈  On  →  𝑥  ⊆  On ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝑥  ∈  ω  →  𝑥  ⊆  On ) | 
						
							| 18 | 9 | fdmi | ⊢ dom   M   =  On | 
						
							| 19 | 17 18 | sseqtrrdi | ⊢ ( 𝑥  ∈  ω  →  𝑥  ⊆  dom   M  ) | 
						
							| 20 |  | funimass4 | ⊢ ( ( Fun   M   ∧  𝑥  ⊆  dom   M  )  →  ( (  M   “  𝑥 )  ⊆  Fin  ↔  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin ) ) | 
						
							| 21 | 11 19 20 | sylancr | ⊢ ( 𝑥  ∈  ω  →  ( (  M   “  𝑥 )  ⊆  Fin  ↔  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin ) ) | 
						
							| 22 | 21 | biimpar | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  (  M   “  𝑥 )  ⊆  Fin ) | 
						
							| 23 |  | unifi | ⊢ ( ( (  M   “  𝑥 )  ∈  Fin  ∧  (  M   “  𝑥 )  ⊆  Fin )  →  ∪  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 24 | 15 22 23 | syl2anc | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  ∪  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 25 |  | pwfi | ⊢ ( ∪  (  M   “  𝑥 )  ∈  Fin  ↔  𝒫  ∪  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 26 | 24 25 | sylib | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  𝒫  ∪  (  M   “  𝑥 )  ∈  Fin ) | 
						
							| 27 |  | xpfi | ⊢ ( ( 𝒫  ∪  (  M   “  𝑥 )  ∈  Fin  ∧  𝒫  ∪  (  M   “  𝑥 )  ∈  Fin )  →  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) )  ∈  Fin ) | 
						
							| 28 | 26 26 27 | syl2anc | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) )  ∈  Fin ) | 
						
							| 29 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 30 | 29 | funimaex | ⊢ ( Fun   M   →  (  M   “  𝑥 )  ∈  V ) | 
						
							| 31 | 11 30 | ax-mp | ⊢ (  M   “  𝑥 )  ∈  V | 
						
							| 32 | 31 | uniex | ⊢ ∪  (  M   “  𝑥 )  ∈  V | 
						
							| 33 | 32 | pwex | ⊢ 𝒫  ∪  (  M   “  𝑥 )  ∈  V | 
						
							| 34 | 33 33 | xpex | ⊢ ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) )  ∈  V | 
						
							| 35 |  | scutf | ⊢  |s  :  <<s  ⟶  No | 
						
							| 36 |  | ffun | ⊢ (  |s  :  <<s  ⟶  No   →  Fun   |s  ) | 
						
							| 37 | 35 36 | ax-mp | ⊢ Fun   |s | 
						
							| 38 |  | imadomg | ⊢ ( ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) )  ∈  V  →  ( Fun   |s   →  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  ≼  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) ) ) | 
						
							| 39 | 34 37 38 | mp2 | ⊢ (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  ≼  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) | 
						
							| 40 |  | domfi | ⊢ ( ( ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) )  ∈  Fin  ∧  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  ≼  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  →  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  ∈  Fin ) | 
						
							| 41 | 28 39 40 | sylancl | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  (  |s   “  ( 𝒫  ∪  (  M   “  𝑥 )  ×  𝒫  ∪  (  M   “  𝑥 ) ) )  ∈  Fin ) | 
						
							| 42 | 8 41 | eqeltrd | ⊢ ( ( 𝑥  ∈  ω  ∧  ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin )  →  (  M  ‘ 𝑥 )  ∈  Fin ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝑥  ∈  ω  →  ( ∀ 𝑦  ∈  𝑥 (  M  ‘ 𝑦 )  ∈  Fin  →  (  M  ‘ 𝑥 )  ∈  Fin ) ) | 
						
							| 44 | 2 4 43 | omsinds | ⊢ ( 𝐴  ∈  ω  →  (  M  ‘ 𝐴 )  ∈  Fin ) |