Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( M ‘ 𝑥 ) = ( M ‘ 𝑦 ) ) |
2 |
1
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( M ‘ 𝑥 ) ∈ Fin ↔ ( M ‘ 𝑦 ) ∈ Fin ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( M ‘ 𝑥 ) = ( M ‘ 𝐴 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( M ‘ 𝑥 ) ∈ Fin ↔ ( M ‘ 𝐴 ) ∈ Fin ) ) |
5 |
|
nnon |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ On ) |
6 |
|
madeval |
⊢ ( 𝑥 ∈ On → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑥 ∈ ω → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ) |
9 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
10 |
|
ffun |
⊢ ( M : On ⟶ 𝒫 No → Fun M ) |
11 |
9 10
|
ax-mp |
⊢ Fun M |
12 |
|
nnfi |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) |
13 |
|
imafi |
⊢ ( ( Fun M ∧ 𝑥 ∈ Fin ) → ( M “ 𝑥 ) ∈ Fin ) |
14 |
11 12 13
|
sylancr |
⊢ ( 𝑥 ∈ ω → ( M “ 𝑥 ) ∈ Fin ) |
15 |
14
|
adantr |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M “ 𝑥 ) ∈ Fin ) |
16 |
|
onss |
⊢ ( 𝑥 ∈ On → 𝑥 ⊆ On ) |
17 |
5 16
|
syl |
⊢ ( 𝑥 ∈ ω → 𝑥 ⊆ On ) |
18 |
9
|
fdmi |
⊢ dom M = On |
19 |
17 18
|
sseqtrrdi |
⊢ ( 𝑥 ∈ ω → 𝑥 ⊆ dom M ) |
20 |
|
funimass4 |
⊢ ( ( Fun M ∧ 𝑥 ⊆ dom M ) → ( ( M “ 𝑥 ) ⊆ Fin ↔ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) ) |
21 |
11 19 20
|
sylancr |
⊢ ( 𝑥 ∈ ω → ( ( M “ 𝑥 ) ⊆ Fin ↔ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) ) |
22 |
21
|
biimpar |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M “ 𝑥 ) ⊆ Fin ) |
23 |
|
unifi |
⊢ ( ( ( M “ 𝑥 ) ∈ Fin ∧ ( M “ 𝑥 ) ⊆ Fin ) → ∪ ( M “ 𝑥 ) ∈ Fin ) |
24 |
15 22 23
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ∪ ( M “ 𝑥 ) ∈ Fin ) |
25 |
|
pwfi |
⊢ ( ∪ ( M “ 𝑥 ) ∈ Fin ↔ 𝒫 ∪ ( M “ 𝑥 ) ∈ Fin ) |
26 |
24 25
|
sylib |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → 𝒫 ∪ ( M “ 𝑥 ) ∈ Fin ) |
27 |
|
xpfi |
⊢ ( ( 𝒫 ∪ ( M “ 𝑥 ) ∈ Fin ∧ 𝒫 ∪ ( M “ 𝑥 ) ∈ Fin ) → ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ∈ Fin ) |
28 |
26 26 27
|
syl2anc |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ∈ Fin ) |
29 |
|
vex |
⊢ 𝑥 ∈ V |
30 |
29
|
funimaex |
⊢ ( Fun M → ( M “ 𝑥 ) ∈ V ) |
31 |
11 30
|
ax-mp |
⊢ ( M “ 𝑥 ) ∈ V |
32 |
31
|
uniex |
⊢ ∪ ( M “ 𝑥 ) ∈ V |
33 |
32
|
pwex |
⊢ 𝒫 ∪ ( M “ 𝑥 ) ∈ V |
34 |
33 33
|
xpex |
⊢ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ∈ V |
35 |
|
scutf |
⊢ |s : <<s ⟶ No |
36 |
|
ffun |
⊢ ( |s : <<s ⟶ No → Fun |s ) |
37 |
35 36
|
ax-mp |
⊢ Fun |s |
38 |
|
imadomg |
⊢ ( ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ∈ V → ( Fun |s → ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ) |
39 |
34 37 38
|
mp2 |
⊢ ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) |
40 |
|
domfi |
⊢ ( ( ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ∈ Fin ∧ ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) → ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ∈ Fin ) |
41 |
28 39 40
|
sylancl |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( |s “ ( 𝒫 ∪ ( M “ 𝑥 ) × 𝒫 ∪ ( M “ 𝑥 ) ) ) ∈ Fin ) |
42 |
8 41
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ω ∧ ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M ‘ 𝑥 ) ∈ Fin ) |
43 |
42
|
ex |
⊢ ( 𝑥 ∈ ω → ( ∀ 𝑦 ∈ 𝑥 ( M ‘ 𝑦 ) ∈ Fin → ( M ‘ 𝑥 ) ∈ Fin ) ) |
44 |
2 4 43
|
omsinds |
⊢ ( 𝐴 ∈ ω → ( M ‘ 𝐴 ) ∈ Fin ) |