Metamath Proof Explorer


Theorem madefi

Description: The made set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion madefi ( 𝐴 ∈ ω → ( M ‘ 𝐴 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 fveq2 ( 𝑥 = 𝑦 → ( M ‘ 𝑥 ) = ( M ‘ 𝑦 ) )
2 1 eleq1d ( 𝑥 = 𝑦 → ( ( M ‘ 𝑥 ) ∈ Fin ↔ ( M ‘ 𝑦 ) ∈ Fin ) )
3 fveq2 ( 𝑥 = 𝐴 → ( M ‘ 𝑥 ) = ( M ‘ 𝐴 ) )
4 3 eleq1d ( 𝑥 = 𝐴 → ( ( M ‘ 𝑥 ) ∈ Fin ↔ ( M ‘ 𝐴 ) ∈ Fin ) )
5 nnon ( 𝑥 ∈ ω → 𝑥 ∈ On )
6 madeval ( 𝑥 ∈ On → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) )
7 5 6 syl ( 𝑥 ∈ ω → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) )
8 7 adantr ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M ‘ 𝑥 ) = ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) )
9 madef M : On ⟶ 𝒫 No
10 ffun ( M : On ⟶ 𝒫 No → Fun M )
11 9 10 ax-mp Fun M
12 nnfi ( 𝑥 ∈ ω → 𝑥 ∈ Fin )
13 imafi ( ( Fun M ∧ 𝑥 ∈ Fin ) → ( M “ 𝑥 ) ∈ Fin )
14 11 12 13 sylancr ( 𝑥 ∈ ω → ( M “ 𝑥 ) ∈ Fin )
15 14 adantr ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M “ 𝑥 ) ∈ Fin )
16 onss ( 𝑥 ∈ On → 𝑥 ⊆ On )
17 5 16 syl ( 𝑥 ∈ ω → 𝑥 ⊆ On )
18 9 fdmi dom M = On
19 17 18 sseqtrrdi ( 𝑥 ∈ ω → 𝑥 ⊆ dom M )
20 funimass4 ( ( Fun M ∧ 𝑥 ⊆ dom M ) → ( ( M “ 𝑥 ) ⊆ Fin ↔ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) )
21 11 19 20 sylancr ( 𝑥 ∈ ω → ( ( M “ 𝑥 ) ⊆ Fin ↔ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) )
22 21 biimpar ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M “ 𝑥 ) ⊆ Fin )
23 unifi ( ( ( M “ 𝑥 ) ∈ Fin ∧ ( M “ 𝑥 ) ⊆ Fin ) → ( M “ 𝑥 ) ∈ Fin )
24 15 22 23 syl2anc ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M “ 𝑥 ) ∈ Fin )
25 pwfi ( ( M “ 𝑥 ) ∈ Fin ↔ 𝒫 ( M “ 𝑥 ) ∈ Fin )
26 24 25 sylib ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → 𝒫 ( M “ 𝑥 ) ∈ Fin )
27 xpfi ( ( 𝒫 ( M “ 𝑥 ) ∈ Fin ∧ 𝒫 ( M “ 𝑥 ) ∈ Fin ) → ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ∈ Fin )
28 26 26 27 syl2anc ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ∈ Fin )
29 vex 𝑥 ∈ V
30 29 funimaex ( Fun M → ( M “ 𝑥 ) ∈ V )
31 11 30 ax-mp ( M “ 𝑥 ) ∈ V
32 31 uniex ( M “ 𝑥 ) ∈ V
33 32 pwex 𝒫 ( M “ 𝑥 ) ∈ V
34 33 33 xpex ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ∈ V
35 scutf |s : <<s ⟶ No
36 ffun ( |s : <<s ⟶ No → Fun |s )
37 35 36 ax-mp Fun |s
38 imadomg ( ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ∈ V → ( Fun |s → ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) )
39 34 37 38 mp2 ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) )
40 domfi ( ( ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ∈ Fin ∧ ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) ≼ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) → ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) ∈ Fin )
41 28 39 40 sylancl ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( |s “ ( 𝒫 ( M “ 𝑥 ) × 𝒫 ( M “ 𝑥 ) ) ) ∈ Fin )
42 8 41 eqeltrd ( ( 𝑥 ∈ ω ∧ ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin ) → ( M ‘ 𝑥 ) ∈ Fin )
43 42 ex ( 𝑥 ∈ ω → ( ∀ 𝑦𝑥 ( M ‘ 𝑦 ) ∈ Fin → ( M ‘ 𝑥 ) ∈ Fin ) )
44 2 4 43 omsinds ( 𝐴 ∈ ω → ( M ‘ 𝐴 ) ∈ Fin )