Metamath Proof Explorer


Theorem oldfi

Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion oldfi ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 nnon ( 𝐴 ∈ ω → 𝐴 ∈ On )
2 oldval ( 𝐴 ∈ On → ( O ‘ 𝐴 ) = ( M “ 𝐴 ) )
3 1 2 syl ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) = ( M “ 𝐴 ) )
4 madef M : On ⟶ 𝒫 No
5 ffun ( M : On ⟶ 𝒫 No → Fun M )
6 4 5 ax-mp Fun M
7 nnfi ( 𝐴 ∈ ω → 𝐴 ∈ Fin )
8 imafi ( ( Fun M ∧ 𝐴 ∈ Fin ) → ( M “ 𝐴 ) ∈ Fin )
9 6 7 8 sylancr ( 𝐴 ∈ ω → ( M “ 𝐴 ) ∈ Fin )
10 elnn ( ( 𝑥𝐴𝐴 ∈ ω ) → 𝑥 ∈ ω )
11 10 ancoms ( ( 𝐴 ∈ ω ∧ 𝑥𝐴 ) → 𝑥 ∈ ω )
12 madefi ( 𝑥 ∈ ω → ( M ‘ 𝑥 ) ∈ Fin )
13 11 12 syl ( ( 𝐴 ∈ ω ∧ 𝑥𝐴 ) → ( M ‘ 𝑥 ) ∈ Fin )
14 13 ralrimiva ( 𝐴 ∈ ω → ∀ 𝑥𝐴 ( M ‘ 𝑥 ) ∈ Fin )
15 onss ( 𝐴 ∈ On → 𝐴 ⊆ On )
16 1 15 syl ( 𝐴 ∈ ω → 𝐴 ⊆ On )
17 4 fdmi dom M = On
18 16 17 sseqtrrdi ( 𝐴 ∈ ω → 𝐴 ⊆ dom M )
19 funimass4 ( ( Fun M ∧ 𝐴 ⊆ dom M ) → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥𝐴 ( M ‘ 𝑥 ) ∈ Fin ) )
20 6 18 19 sylancr ( 𝐴 ∈ ω → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥𝐴 ( M ‘ 𝑥 ) ∈ Fin ) )
21 14 20 mpbird ( 𝐴 ∈ ω → ( M “ 𝐴 ) ⊆ Fin )
22 unifi ( ( ( M “ 𝐴 ) ∈ Fin ∧ ( M “ 𝐴 ) ⊆ Fin ) → ( M “ 𝐴 ) ∈ Fin )
23 9 21 22 syl2anc ( 𝐴 ∈ ω → ( M “ 𝐴 ) ∈ Fin )
24 3 23 eqeltrd ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) ∈ Fin )