Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ On ) |
2 |
|
oldval |
⊢ ( 𝐴 ∈ On → ( O ‘ 𝐴 ) = ∪ ( M “ 𝐴 ) ) |
3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) = ∪ ( M “ 𝐴 ) ) |
4 |
|
madef |
⊢ M : On ⟶ 𝒫 No |
5 |
|
ffun |
⊢ ( M : On ⟶ 𝒫 No → Fun M ) |
6 |
4 5
|
ax-mp |
⊢ Fun M |
7 |
|
nnfi |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) |
8 |
|
imafi |
⊢ ( ( Fun M ∧ 𝐴 ∈ Fin ) → ( M “ 𝐴 ) ∈ Fin ) |
9 |
6 7 8
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( M “ 𝐴 ) ∈ Fin ) |
10 |
|
elnn |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐴 ∈ ω ) → 𝑥 ∈ ω ) |
11 |
10
|
ancoms |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ω ) |
12 |
|
madefi |
⊢ ( 𝑥 ∈ ω → ( M ‘ 𝑥 ) ∈ Fin ) |
13 |
11 12
|
syl |
⊢ ( ( 𝐴 ∈ ω ∧ 𝑥 ∈ 𝐴 ) → ( M ‘ 𝑥 ) ∈ Fin ) |
14 |
13
|
ralrimiva |
⊢ ( 𝐴 ∈ ω → ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) |
15 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
16 |
1 15
|
syl |
⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ On ) |
17 |
4
|
fdmi |
⊢ dom M = On |
18 |
16 17
|
sseqtrrdi |
⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ dom M ) |
19 |
|
funimass4 |
⊢ ( ( Fun M ∧ 𝐴 ⊆ dom M ) → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) ) |
20 |
6 18 19
|
sylancr |
⊢ ( 𝐴 ∈ ω → ( ( M “ 𝐴 ) ⊆ Fin ↔ ∀ 𝑥 ∈ 𝐴 ( M ‘ 𝑥 ) ∈ Fin ) ) |
21 |
14 20
|
mpbird |
⊢ ( 𝐴 ∈ ω → ( M “ 𝐴 ) ⊆ Fin ) |
22 |
|
unifi |
⊢ ( ( ( M “ 𝐴 ) ∈ Fin ∧ ( M “ 𝐴 ) ⊆ Fin ) → ∪ ( M “ 𝐴 ) ∈ Fin ) |
23 |
9 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ ω → ∪ ( M “ 𝐴 ) ∈ Fin ) |
24 |
3 23
|
eqeltrd |
⊢ ( 𝐴 ∈ ω → ( O ‘ 𝐴 ) ∈ Fin ) |