| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnon | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  On ) | 
						
							| 2 |  | oldval | ⊢ ( 𝐴  ∈  On  →  (  O  ‘ 𝐴 )  =  ∪  (  M   “  𝐴 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐴  ∈  ω  →  (  O  ‘ 𝐴 )  =  ∪  (  M   “  𝐴 ) ) | 
						
							| 4 |  | madef | ⊢  M  : On ⟶ 𝒫   No | 
						
							| 5 |  | ffun | ⊢ (  M  : On ⟶ 𝒫   No   →  Fun   M  ) | 
						
							| 6 | 4 5 | ax-mp | ⊢ Fun   M | 
						
							| 7 |  | nnfi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ∈  Fin ) | 
						
							| 8 |  | imafi | ⊢ ( ( Fun   M   ∧  𝐴  ∈  Fin )  →  (  M   “  𝐴 )  ∈  Fin ) | 
						
							| 9 | 6 7 8 | sylancr | ⊢ ( 𝐴  ∈  ω  →  (  M   “  𝐴 )  ∈  Fin ) | 
						
							| 10 |  | elnn | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝐴  ∈  ω )  →  𝑥  ∈  ω ) | 
						
							| 11 | 10 | ancoms | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  ω ) | 
						
							| 12 |  | madefi | ⊢ ( 𝑥  ∈  ω  →  (  M  ‘ 𝑥 )  ∈  Fin ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( 𝐴  ∈  ω  ∧  𝑥  ∈  𝐴 )  →  (  M  ‘ 𝑥 )  ∈  Fin ) | 
						
							| 14 | 13 | ralrimiva | ⊢ ( 𝐴  ∈  ω  →  ∀ 𝑥  ∈  𝐴 (  M  ‘ 𝑥 )  ∈  Fin ) | 
						
							| 15 |  | onss | ⊢ ( 𝐴  ∈  On  →  𝐴  ⊆  On ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝐴  ∈  ω  →  𝐴  ⊆  On ) | 
						
							| 17 | 4 | fdmi | ⊢ dom   M   =  On | 
						
							| 18 | 16 17 | sseqtrrdi | ⊢ ( 𝐴  ∈  ω  →  𝐴  ⊆  dom   M  ) | 
						
							| 19 |  | funimass4 | ⊢ ( ( Fun   M   ∧  𝐴  ⊆  dom   M  )  →  ( (  M   “  𝐴 )  ⊆  Fin  ↔  ∀ 𝑥  ∈  𝐴 (  M  ‘ 𝑥 )  ∈  Fin ) ) | 
						
							| 20 | 6 18 19 | sylancr | ⊢ ( 𝐴  ∈  ω  →  ( (  M   “  𝐴 )  ⊆  Fin  ↔  ∀ 𝑥  ∈  𝐴 (  M  ‘ 𝑥 )  ∈  Fin ) ) | 
						
							| 21 | 14 20 | mpbird | ⊢ ( 𝐴  ∈  ω  →  (  M   “  𝐴 )  ⊆  Fin ) | 
						
							| 22 |  | unifi | ⊢ ( ( (  M   “  𝐴 )  ∈  Fin  ∧  (  M   “  𝐴 )  ⊆  Fin )  →  ∪  (  M   “  𝐴 )  ∈  Fin ) | 
						
							| 23 | 9 21 22 | syl2anc | ⊢ ( 𝐴  ∈  ω  →  ∪  (  M   “  𝐴 )  ∈  Fin ) | 
						
							| 24 | 3 23 | eqeltrd | ⊢ ( 𝐴  ∈  ω  →  (  O  ‘ 𝐴 )  ∈  Fin ) |