| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
| 2 |
|
oldval |
|- ( A e. On -> ( _Old ` A ) = U. ( _Made " A ) ) |
| 3 |
1 2
|
syl |
|- ( A e. _om -> ( _Old ` A ) = U. ( _Made " A ) ) |
| 4 |
|
madef |
|- _Made : On --> ~P No |
| 5 |
|
ffun |
|- ( _Made : On --> ~P No -> Fun _Made ) |
| 6 |
4 5
|
ax-mp |
|- Fun _Made |
| 7 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
| 8 |
|
imafi |
|- ( ( Fun _Made /\ A e. Fin ) -> ( _Made " A ) e. Fin ) |
| 9 |
6 7 8
|
sylancr |
|- ( A e. _om -> ( _Made " A ) e. Fin ) |
| 10 |
|
elnn |
|- ( ( x e. A /\ A e. _om ) -> x e. _om ) |
| 11 |
10
|
ancoms |
|- ( ( A e. _om /\ x e. A ) -> x e. _om ) |
| 12 |
|
madefi |
|- ( x e. _om -> ( _Made ` x ) e. Fin ) |
| 13 |
11 12
|
syl |
|- ( ( A e. _om /\ x e. A ) -> ( _Made ` x ) e. Fin ) |
| 14 |
13
|
ralrimiva |
|- ( A e. _om -> A. x e. A ( _Made ` x ) e. Fin ) |
| 15 |
|
onss |
|- ( A e. On -> A C_ On ) |
| 16 |
1 15
|
syl |
|- ( A e. _om -> A C_ On ) |
| 17 |
4
|
fdmi |
|- dom _Made = On |
| 18 |
16 17
|
sseqtrrdi |
|- ( A e. _om -> A C_ dom _Made ) |
| 19 |
|
funimass4 |
|- ( ( Fun _Made /\ A C_ dom _Made ) -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) ) |
| 20 |
6 18 19
|
sylancr |
|- ( A e. _om -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) ) |
| 21 |
14 20
|
mpbird |
|- ( A e. _om -> ( _Made " A ) C_ Fin ) |
| 22 |
|
unifi |
|- ( ( ( _Made " A ) e. Fin /\ ( _Made " A ) C_ Fin ) -> U. ( _Made " A ) e. Fin ) |
| 23 |
9 21 22
|
syl2anc |
|- ( A e. _om -> U. ( _Made " A ) e. Fin ) |
| 24 |
3 23
|
eqeltrd |
|- ( A e. _om -> ( _Old ` A ) e. Fin ) |