Metamath Proof Explorer


Theorem oldfi

Description: The old set of an ordinal natural is finite. (Contributed by Scott Fenton, 20-Aug-2025)

Ref Expression
Assertion oldfi
|- ( A e. _om -> ( _Old ` A ) e. Fin )

Proof

Step Hyp Ref Expression
1 nnon
 |-  ( A e. _om -> A e. On )
2 oldval
 |-  ( A e. On -> ( _Old ` A ) = U. ( _Made " A ) )
3 1 2 syl
 |-  ( A e. _om -> ( _Old ` A ) = U. ( _Made " A ) )
4 madef
 |-  _Made : On --> ~P No
5 ffun
 |-  ( _Made : On --> ~P No -> Fun _Made )
6 4 5 ax-mp
 |-  Fun _Made
7 nnfi
 |-  ( A e. _om -> A e. Fin )
8 imafi
 |-  ( ( Fun _Made /\ A e. Fin ) -> ( _Made " A ) e. Fin )
9 6 7 8 sylancr
 |-  ( A e. _om -> ( _Made " A ) e. Fin )
10 elnn
 |-  ( ( x e. A /\ A e. _om ) -> x e. _om )
11 10 ancoms
 |-  ( ( A e. _om /\ x e. A ) -> x e. _om )
12 madefi
 |-  ( x e. _om -> ( _Made ` x ) e. Fin )
13 11 12 syl
 |-  ( ( A e. _om /\ x e. A ) -> ( _Made ` x ) e. Fin )
14 13 ralrimiva
 |-  ( A e. _om -> A. x e. A ( _Made ` x ) e. Fin )
15 onss
 |-  ( A e. On -> A C_ On )
16 1 15 syl
 |-  ( A e. _om -> A C_ On )
17 4 fdmi
 |-  dom _Made = On
18 16 17 sseqtrrdi
 |-  ( A e. _om -> A C_ dom _Made )
19 funimass4
 |-  ( ( Fun _Made /\ A C_ dom _Made ) -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) )
20 6 18 19 sylancr
 |-  ( A e. _om -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) )
21 14 20 mpbird
 |-  ( A e. _om -> ( _Made " A ) C_ Fin )
22 unifi
 |-  ( ( ( _Made " A ) e. Fin /\ ( _Made " A ) C_ Fin ) -> U. ( _Made " A ) e. Fin )
23 9 21 22 syl2anc
 |-  ( A e. _om -> U. ( _Made " A ) e. Fin )
24 3 23 eqeltrd
 |-  ( A e. _om -> ( _Old ` A ) e. Fin )