Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
|- ( A e. _om -> A e. On ) |
2 |
|
oldval |
|- ( A e. On -> ( _Old ` A ) = U. ( _Made " A ) ) |
3 |
1 2
|
syl |
|- ( A e. _om -> ( _Old ` A ) = U. ( _Made " A ) ) |
4 |
|
madef |
|- _Made : On --> ~P No |
5 |
|
ffun |
|- ( _Made : On --> ~P No -> Fun _Made ) |
6 |
4 5
|
ax-mp |
|- Fun _Made |
7 |
|
nnfi |
|- ( A e. _om -> A e. Fin ) |
8 |
|
imafi |
|- ( ( Fun _Made /\ A e. Fin ) -> ( _Made " A ) e. Fin ) |
9 |
6 7 8
|
sylancr |
|- ( A e. _om -> ( _Made " A ) e. Fin ) |
10 |
|
elnn |
|- ( ( x e. A /\ A e. _om ) -> x e. _om ) |
11 |
10
|
ancoms |
|- ( ( A e. _om /\ x e. A ) -> x e. _om ) |
12 |
|
madefi |
|- ( x e. _om -> ( _Made ` x ) e. Fin ) |
13 |
11 12
|
syl |
|- ( ( A e. _om /\ x e. A ) -> ( _Made ` x ) e. Fin ) |
14 |
13
|
ralrimiva |
|- ( A e. _om -> A. x e. A ( _Made ` x ) e. Fin ) |
15 |
|
onss |
|- ( A e. On -> A C_ On ) |
16 |
1 15
|
syl |
|- ( A e. _om -> A C_ On ) |
17 |
4
|
fdmi |
|- dom _Made = On |
18 |
16 17
|
sseqtrrdi |
|- ( A e. _om -> A C_ dom _Made ) |
19 |
|
funimass4 |
|- ( ( Fun _Made /\ A C_ dom _Made ) -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) ) |
20 |
6 18 19
|
sylancr |
|- ( A e. _om -> ( ( _Made " A ) C_ Fin <-> A. x e. A ( _Made ` x ) e. Fin ) ) |
21 |
14 20
|
mpbird |
|- ( A e. _om -> ( _Made " A ) C_ Fin ) |
22 |
|
unifi |
|- ( ( ( _Made " A ) e. Fin /\ ( _Made " A ) C_ Fin ) -> U. ( _Made " A ) e. Fin ) |
23 |
9 21 22
|
syl2anc |
|- ( A e. _om -> U. ( _Made " A ) e. Fin ) |
24 |
3 23
|
eqeltrd |
|- ( A e. _om -> ( _Old ` A ) e. Fin ) |