| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omsinds.1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝜑  ↔  𝜓 ) ) | 
						
							| 2 |  | omsinds.2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝜑  ↔  𝜒 ) ) | 
						
							| 3 |  | omsinds.3 | ⊢ ( 𝑥  ∈  ω  →  ( ∀ 𝑦  ∈  𝑥 𝜓  →  𝜑 ) ) | 
						
							| 4 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 5 |  | epweon | ⊢  E   We  On | 
						
							| 6 |  | wess | ⊢ ( ω  ⊆  On  →  (  E   We  On  →   E   We  ω ) ) | 
						
							| 7 | 4 5 6 | mp2 | ⊢  E   We  ω | 
						
							| 8 |  | epse | ⊢  E   Se  ω | 
						
							| 9 |  | trom | ⊢ Tr  ω | 
						
							| 10 |  | trpred | ⊢ ( ( Tr  ω  ∧  𝑥  ∈  ω )  →  Pred (  E  ,  ω ,  𝑥 )  =  𝑥 ) | 
						
							| 11 | 9 10 | mpan | ⊢ ( 𝑥  ∈  ω  →  Pred (  E  ,  ω ,  𝑥 )  =  𝑥 ) | 
						
							| 12 | 11 | raleqdv | ⊢ ( 𝑥  ∈  ω  →  ( ∀ 𝑦  ∈  Pred (  E  ,  ω ,  𝑥 ) 𝜓  ↔  ∀ 𝑦  ∈  𝑥 𝜓 ) ) | 
						
							| 13 | 12 3 | sylbid | ⊢ ( 𝑥  ∈  ω  →  ( ∀ 𝑦  ∈  Pred (  E  ,  ω ,  𝑥 ) 𝜓  →  𝜑 ) ) | 
						
							| 14 | 7 8 1 2 13 | wfis3 | ⊢ ( 𝐴  ∈  ω  →  𝜒 ) |