| Step | Hyp | Ref | Expression | 
						
							| 1 |  | omsinds.1 |  |-  ( x = y -> ( ph <-> ps ) ) | 
						
							| 2 |  | omsinds.2 |  |-  ( x = A -> ( ph <-> ch ) ) | 
						
							| 3 |  | omsinds.3 |  |-  ( x e. _om -> ( A. y e. x ps -> ph ) ) | 
						
							| 4 |  | omsson |  |-  _om C_ On | 
						
							| 5 |  | epweon |  |-  _E We On | 
						
							| 6 |  | wess |  |-  ( _om C_ On -> ( _E We On -> _E We _om ) ) | 
						
							| 7 | 4 5 6 | mp2 |  |-  _E We _om | 
						
							| 8 |  | epse |  |-  _E Se _om | 
						
							| 9 |  | trom |  |-  Tr _om | 
						
							| 10 |  | trpred |  |-  ( ( Tr _om /\ x e. _om ) -> Pred ( _E , _om , x ) = x ) | 
						
							| 11 | 9 10 | mpan |  |-  ( x e. _om -> Pred ( _E , _om , x ) = x ) | 
						
							| 12 | 11 | raleqdv |  |-  ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps <-> A. y e. x ps ) ) | 
						
							| 13 | 12 3 | sylbid |  |-  ( x e. _om -> ( A. y e. Pred ( _E , _om , x ) ps -> ph ) ) | 
						
							| 14 | 7 8 1 2 13 | wfis3 |  |-  ( A e. _om -> ch ) |