Description: The class of predecessors of an element of a transitive class for the membership relation is that element. (Contributed by BJ, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trpred | |- ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | predep | |- ( X e. A -> Pred ( _E , A , X ) = ( A i^i X ) ) |
|
| 2 | 1 | adantl | |- ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = ( A i^i X ) ) |
| 3 | trss | |- ( Tr A -> ( X e. A -> X C_ A ) ) |
|
| 4 | 3 | imp | |- ( ( Tr A /\ X e. A ) -> X C_ A ) |
| 5 | sseqin2 | |- ( X C_ A <-> ( A i^i X ) = X ) |
|
| 6 | 4 5 | sylib | |- ( ( Tr A /\ X e. A ) -> ( A i^i X ) = X ) |
| 7 | 2 6 | eqtrd | |- ( ( Tr A /\ X e. A ) -> Pred ( _E , A , X ) = X ) |