Metamath Proof Explorer


Theorem omsinds

Description: Strong (or "total") induction principle over the finite ordinals. (Contributed by Scott Fenton, 17-Jul-2015) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypotheses omsinds.1 x=yφψ
omsinds.2 x=Aφχ
omsinds.3 xωyxψφ
Assertion omsinds Aωχ

Proof

Step Hyp Ref Expression
1 omsinds.1 x=yφψ
2 omsinds.2 x=Aφχ
3 omsinds.3 xωyxψφ
4 omsson ωOn
5 epweon EWeOn
6 wess ωOnEWeOnEWeω
7 4 5 6 mp2 EWeω
8 epse ESeω
9 trom Trω
10 trpred TrωxωPredEωx=x
11 9 10 mpan xωPredEωx=x
12 11 raleqdv xωyPredEωxψyxψ
13 12 3 sylbid xωyPredEωxψφ
14 7 8 1 2 13 wfis3 Aωχ