Metamath Proof Explorer


Theorem omsindsOLD

Description: Obsolete version of omsinds as of 16-Oct-2024. (Contributed by Scott Fenton, 17-Jul-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses omsinds.1 x=yφψ
omsinds.2 x=Aφχ
omsinds.3 xωyxψφ
Assertion omsindsOLD Aωχ

Proof

Step Hyp Ref Expression
1 omsinds.1 x=yφψ
2 omsinds.2 x=Aφχ
3 omsinds.3 xωyxψφ
4 omsson ωOn
5 epweon EWeOn
6 wess ωOnEWeOnEWeω
7 4 5 6 mp2 EWeω
8 epse ESeω
9 predep xωPredEωx=ωx
10 ordom Ordω
11 ordtr OrdωTrω
12 trss Trωxωxω
13 10 11 12 mp2b xωxω
14 sseqin2 xωωx=x
15 13 14 sylib xωωx=x
16 9 15 eqtrd xωPredEωx=x
17 16 raleqdv xωyPredEωxψyxψ
18 17 3 sylbid xωyPredEωxψφ
19 7 8 1 2 18 wfis3 Aωχ