Metamath Proof Explorer


Theorem omun

Description: The union of two finite ordinals is a finite ordinal. (Contributed by Scott Fenton, 15-Mar-2025)

Ref Expression
Assertion omun AωBωABω

Proof

Step Hyp Ref Expression
1 ssequn1 ABAB=B
2 eleq1a BωAB=BABω
3 2 adantl AωBωAB=BABω
4 1 3 biimtrid AωBωABABω
5 ssequn2 BAAB=A
6 eleq1a AωAB=AABω
7 6 adantr AωBωAB=AABω
8 5 7 biimtrid AωBωBAABω
9 nnord AωOrdA
10 nnord BωOrdB
11 ordtri2or2 OrdAOrdBABBA
12 9 10 11 syl2an AωBωABBA
13 4 8 12 mpjaod AωBωABω