Metamath Proof Explorer


Theorem cvlsupr5

Description: Consequence of superposition condition ( P .\/ R ) = ( Q .\/ R ) . (Contributed by NM, 9-Nov-2012)

Ref Expression
Hypotheses cvlsupr5.a
|- A = ( Atoms ` K )
cvlsupr5.j
|- .\/ = ( join ` K )
Assertion cvlsupr5
|- ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R =/= P )

Proof

Step Hyp Ref Expression
1 cvlsupr5.a
 |-  A = ( Atoms ` K )
2 cvlsupr5.j
 |-  .\/ = ( join ` K )
3 eqid
 |-  ( le ` K ) = ( le ` K )
4 1 3 2 cvlsupr2
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) <-> ( R =/= P /\ R =/= Q /\ R ( le ` K ) ( P .\/ Q ) ) ) )
5 simp1
 |-  ( ( R =/= P /\ R =/= Q /\ R ( le ` K ) ( P .\/ Q ) ) -> R =/= P )
6 4 5 syl6bi
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ P =/= Q ) -> ( ( P .\/ R ) = ( Q .\/ R ) -> R =/= P ) )
7 6 3exp
 |-  ( K e. CvLat -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( P =/= Q -> ( ( P .\/ R ) = ( Q .\/ R ) -> R =/= P ) ) ) )
8 7 imp4a
 |-  ( K e. CvLat -> ( ( P e. A /\ Q e. A /\ R e. A ) -> ( ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) -> R =/= P ) ) )
9 8 3imp
 |-  ( ( K e. CvLat /\ ( P e. A /\ Q e. A /\ R e. A ) /\ ( P =/= Q /\ ( P .\/ R ) = ( Q .\/ R ) ) ) -> R =/= P )