| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvr2.b |
|- B = ( Base ` K ) |
| 2 |
|
cvr2.s |
|- .< = ( lt ` K ) |
| 3 |
|
cvr2.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cvr2.c |
|- C = ( |
| 5 |
|
cvr2.a |
|- A = ( Atoms ` K ) |
| 6 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 7 |
6
|
3ad2ant1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> K e. Lat ) |
| 8 |
|
simp2 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> X e. B ) |
| 9 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> P e. B ) |
| 11 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 12 |
1 11 2 3
|
latnle |
|- ( ( K e. Lat /\ X e. B /\ P e. B ) -> ( -. P ( le ` K ) X <-> X .< ( X .\/ P ) ) ) |
| 13 |
7 8 10 12
|
syl3anc |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P ( le ` K ) X <-> X .< ( X .\/ P ) ) ) |
| 14 |
1 11 3 4 5
|
cvr1 |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( -. P ( le ` K ) X <-> X C ( X .\/ P ) ) ) |
| 15 |
13 14
|
bitr3d |
|- ( ( K e. HL /\ X e. B /\ P e. A ) -> ( X .< ( X .\/ P ) <-> X C ( X .\/ P ) ) ) |