Metamath Proof Explorer


Theorem cycpm3cl

Description: Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c
|- C = ( toCyc ` D )
cycpm3.s
|- S = ( SymGrp ` D )
cycpm3.d
|- ( ph -> D e. V )
cycpm3.i
|- ( ph -> I e. D )
cycpm3.j
|- ( ph -> J e. D )
cycpm3.k
|- ( ph -> K e. D )
cycpm3.1
|- ( ph -> I =/= J )
cycpm3.2
|- ( ph -> J =/= K )
cycpm3.3
|- ( ph -> K =/= I )
Assertion cycpm3cl
|- ( ph -> ( C ` <" I J K "> ) e. ( Base ` S ) )

Proof

Step Hyp Ref Expression
1 cycpm3.c
 |-  C = ( toCyc ` D )
2 cycpm3.s
 |-  S = ( SymGrp ` D )
3 cycpm3.d
 |-  ( ph -> D e. V )
4 cycpm3.i
 |-  ( ph -> I e. D )
5 cycpm3.j
 |-  ( ph -> J e. D )
6 cycpm3.k
 |-  ( ph -> K e. D )
7 cycpm3.1
 |-  ( ph -> I =/= J )
8 cycpm3.2
 |-  ( ph -> J =/= K )
9 cycpm3.3
 |-  ( ph -> K =/= I )
10 4 5 6 s3cld
 |-  ( ph -> <" I J K "> e. Word D )
11 4 5 6 7 8 9 s3f1
 |-  ( ph -> <" I J K "> : dom <" I J K "> -1-1-> D )
12 1 3 10 11 2 cycpmcl
 |-  ( ph -> ( C ` <" I J K "> ) e. ( Base ` S ) )