Description: Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cycpm3.c | ⊢ 𝐶 = ( toCyc ‘ 𝐷 ) | |
cycpm3.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | ||
cycpm3.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
cycpm3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) | ||
cycpm3.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) | ||
cycpm3.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) | ||
cycpm3.1 | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | ||
cycpm3.2 | ⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) | ||
cycpm3.3 | ⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) | ||
Assertion | cycpm3cl | ⊢ ( 𝜑 → ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ∈ ( Base ‘ 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm3.c | ⊢ 𝐶 = ( toCyc ‘ 𝐷 ) | |
2 | cycpm3.s | ⊢ 𝑆 = ( SymGrp ‘ 𝐷 ) | |
3 | cycpm3.d | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
4 | cycpm3.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝐷 ) | |
5 | cycpm3.j | ⊢ ( 𝜑 → 𝐽 ∈ 𝐷 ) | |
6 | cycpm3.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝐷 ) | |
7 | cycpm3.1 | ⊢ ( 𝜑 → 𝐼 ≠ 𝐽 ) | |
8 | cycpm3.2 | ⊢ ( 𝜑 → 𝐽 ≠ 𝐾 ) | |
9 | cycpm3.3 | ⊢ ( 𝜑 → 𝐾 ≠ 𝐼 ) | |
10 | 4 5 6 | s3cld | ⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 ∈ Word 𝐷 ) |
11 | 4 5 6 7 8 9 | s3f1 | ⊢ ( 𝜑 → 〈“ 𝐼 𝐽 𝐾 ”〉 : dom 〈“ 𝐼 𝐽 𝐾 ”〉 –1-1→ 𝐷 ) |
12 | 1 3 10 11 2 | cycpmcl | ⊢ ( 𝜑 → ( 𝐶 ‘ 〈“ 𝐼 𝐽 𝐾 ”〉 ) ∈ ( Base ‘ 𝑆 ) ) |