Metamath Proof Explorer


Theorem cycpm3cl

Description: Closure of the 3-cycles in the permutations. (Contributed by Thierry Arnoux, 19-Sep-2023)

Ref Expression
Hypotheses cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
cycpm3.d ( 𝜑𝐷𝑉 )
cycpm3.i ( 𝜑𝐼𝐷 )
cycpm3.j ( 𝜑𝐽𝐷 )
cycpm3.k ( 𝜑𝐾𝐷 )
cycpm3.1 ( 𝜑𝐼𝐽 )
cycpm3.2 ( 𝜑𝐽𝐾 )
cycpm3.3 ( 𝜑𝐾𝐼 )
Assertion cycpm3cl ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ∈ ( Base ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 cycpm3.c 𝐶 = ( toCyc ‘ 𝐷 )
2 cycpm3.s 𝑆 = ( SymGrp ‘ 𝐷 )
3 cycpm3.d ( 𝜑𝐷𝑉 )
4 cycpm3.i ( 𝜑𝐼𝐷 )
5 cycpm3.j ( 𝜑𝐽𝐷 )
6 cycpm3.k ( 𝜑𝐾𝐷 )
7 cycpm3.1 ( 𝜑𝐼𝐽 )
8 cycpm3.2 ( 𝜑𝐽𝐾 )
9 cycpm3.3 ( 𝜑𝐾𝐼 )
10 4 5 6 s3cld ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ ∈ Word 𝐷 )
11 4 5 6 7 8 9 s3f1 ( 𝜑 → ⟨“ 𝐼 𝐽 𝐾 ”⟩ : dom ⟨“ 𝐼 𝐽 𝐾 ”⟩ –1-1𝐷 )
12 1 3 10 11 2 cycpmcl ( 𝜑 → ( 𝐶 ‘ ⟨“ 𝐼 𝐽 𝐾 ”⟩ ) ∈ ( Base ‘ 𝑆 ) )